Размер молекулы в миллиметрах. Kvant. Размеры молекул

Молярная масса воды:

Если молекулы в жидкости упакованы плотно и каждая из них вписывается в куб объемом V 1 с ребром d , то .

Объем одной молекулы: ,где: V m одного моля, N A - число Авогадро.

Объем одного моля жидкости: , где: М- ее молярная масса, - плотность.

Диаметр молекулы:

Вычисляя, имеем:


Относительная молекулярная масса алюминия Mr=27. Определить его основные молекулярные характеристики.

1.Молярная масса алюминия: M=Mr . 10 -3 M = 27 . 10 -3

Найти концентрацию молекул, гелия (М=4 . 10 -3 кг/моль) при нормальных условиях (р=10 5 Па, Т=273К), их среднеквадратичную скорость и плотность газа. С какой глубины в водоеме всплывает пузырек воздуха, если при этом его объем увеличивается в 2 раза?

Мы не знаем, одинаковой ли остается температура воздуха в пузырьке. Если она одинакова, то процесс всплытия описывается уравнением pV=const . Если изменяется, то уравнением pV/T=const .

Оценим, большую ли ошибку мы допускаем, если пренебрегаем изменением температуры.

Предположим, что мы имеем максимально неблагоприятный результат.Пусть стоит очень жаркая погода и температура воды на поверхности водоема достигает +25 0 С(298 К). На дне температура не может быть ниже +4 0 С (277К), так как этой температуре соответствует максимальная плотность воды. Таким образом, разность температур составляет 21К. По отношению к начальной температуре, эта величина составляет %%.Вряд ли мы встретим такой водоем, перепад температур между поверхностью и дном которого равен названной величине. К тому же, пузырек всплывает достаточно быстро и вряд ли за время всплытия он успеет полностью прогреться. Таким образом, реальная ошибка будет существенно меньшей и мы вполне можем пренебречь изменением температуры воздуха в пузырьке и воспользоваться для описания процесса законом Бойля-Мариотта: p 1 V 1 =p 2 V 2 , где: p 1 - давление воздуха в пузырьке на глубине h (p 1 = p атм. + rgh), p 2 - давление воздуха в пузырьке вблизи поверхности. p 2 = p атм.

(p атм + rgh)V =p атм 2V; ;

Стакан
Перевернутый вверх дном стакан погружают в водоем. На какой глубине стакан начнет тонуть?

В перевернутом вверх дном стакане закупорен воздух. В задаче утверждается, что стакан начинает тонуть только на некоторой глубине. По всей видимости, если его отпустить на глубине меньшей некоторой критической глубины, он всплывет (предполагается, что стакан расположен строго вертикально и не опрокидывается).

Уровень, находясь выше которого стакан всплывает, а ниже которого тонет, характеризуется равенством сил, приложенных к стакану с разных сторон.

Силами, действующими на стакан в вертикальном направлении, являются сила тяжести, направленная вниз, и выталкивающая сила, направленная вверх.

Выталкивающая сила связана с плотностью жидкости, в которую помещен стакан, и объемом вытесненной им жидкости.

Сила тяжести, действующая на стакан, прямо пропорциональна его массе.

Из контекста задачи вытекает, что по мере погружения стакана, сила, направленная вверх, уменьшается. Уменьшение выталкивающей силы может происходить только за счет уменьшения объема вытесненной жидкости, так как жидкости практически несжимаемы и плотность воды у поверхности и на некоторой глубине одинакова.

Уменьшение объема вытесненной жидкости может происходить за счет сжатия воздуха в стакане, которое, в свою очередь, может идти за счет увеличения давления. Изменение температуры, по мере погружения стакана, можно не учитывать, если нас не интересует слишком высокая точность результата. Соответствующее обоснование приведено в предыдущем примере.

Связь давления газа и его объема при постоянной температуре выражается законом Бойля-Мариотта.

Давление жидкости действительно увеличивается с глубиной и передается во все стороны, в том числе и вверх, одинаково.

Гидростатическое давление прямо пропорционально плотности жидкости и ее высоте (глубине погружения).

Записав в качестве исходного уравнения уравнение, характеризующее состояние равновесия стакана, последовательно подставив в него найденные в ходе анализа задачи выражения и решив полученное уравнение относительно искомой глубины, приходим к тому, что для получения численного ответа нам необходимо знать значения плотности воды, атмосферного давления, массы стакана, его объема и ускорения свободного падения.

Все проведенные рассуждения можно отобразить следующим образом:

Поскольку в тексте задачи нет никаких данных, зададим их самостоятельно.

Дано:

Плотность воды r=10 3 кг/м 3 .

Атмосферное давление 10 5 Па.

Объем стакана 200 мл = 2 00 . 10 -3 л = 2 . 10 -4 м 3 .

Масса стакана 50 г = 5 . 10 -2 кг.

Ускорение свободного падения g = 10 м/с 2 .

Численное решение:

Подъем воздушного шара
На сколько градусов необходимо нагреть воздух внутри воздушного шара, чтобы он начал подниматься вверх?

Задача о подъеме воздушного шара так же, как и задача о тонущем стакане, может быть отнесена к классу статических задач.

Шар начнет подниматься так же, как и стакан тонуть, как только нарушится равенство сил, приложенных к этим телам и направленных вверх и вниз. На шар, так же, как и на стакан, действуют сила тяжести, направленная вниз и выталкивающая сила, направленная вверх.

Выталкивающая сила связана с плотностью холодного воздуха, окружающего шар. Эта плотность может быть найдена из уравнения Менделеева-Клапейрона.

Сила тяжести прямо пропорциональна массе шара. Масса шара, в свою очередь, складывается из массы оболочки и массы горячего воздуха, находящегося внутри него. Масса горячего воздуха также может быть найдена из уравнения Менделеева-Клапейрона.

Схематически рассуждения могут быть отображены следующим образом:

Из уравнения можно выразить искомую величину, оценить возможные значения необходимых для получения численного решения задачи величин, подставить эти величины в полученное уравнение и найти ответ в численном виде.

В замкнутом сосуде находится 200 г гелия. Газ совершает сложный процесс. Изменение его параметров отражено на графике зависимости объема от абсолютной температуры.

1. Выразите массу газа в СИ.

2. Чему равна относительная молекулярная масса данного газа?

3. Чему равна молярная масса данного газа (в СИ)?

4. Чему равно количество вещества, содержащегося в сосуде?

5. Сколько молекул газа находится в сосуде?

6. Чему равна масса одной молекулы данного газа?

7. Назовите процессы на участках 1-2, 2-3, 3-1.

8. Определите объем газа в точках 1,2, 3, 4 в мл, л, м 3 .

9. Определите температуру газа в точках 1,2, 3, 4 в 0 С, К.

10. Определите давление газа в точках 1, 2, 3, 4 в мм. рт. ст. , атм, Па.

11. Изобразите данный процесс на графике зависимости давления от абсолютной температуры.

12. Изобразите данный процесс на графике зависимости давления от объема.

Указания к решению:

1. См. условие.

2. Относительная молекулярная масса элемента определяется с помощью таблицы Менделеева.

3. M=M r ·10 -3 кг/моль.

7. p =const - изобарический; V =const-изохорический; T =const - изотермический.

8. 1 м 3 = 10 3 л; 1 л = 10 3 мл. 9.T = t + 273. 10. 1 атм. = 10 5 Па = 760 мм.рт. ст.

8-10. Можно воспользоваться уравнением Менделеева-Клапейрона, либо газовыми законами Бойля-Мариотта, Гей-Люссака, Шарля.

Ответы к задаче

m = 0,2 кг
M r = 4
M = 4 · 10 -3 кг/моль
n = 50 моль
N = 3 · 10 25
m =6,7 · 10 -27 кг
1 - 2 - изобарический
2 - 3 - изохорический
3 - 1 - изотермический
мл л м 3
2 · 10 5 0,2
7 · 10 5 0,7
7 · 10 5 0,7
4 · 10 5 0,4
0 С К
мм.рт.ст. атм Па
7,6 · 10 3 10 6
7,6 · 10 3 10 6
2,28 · 10 3 0,3 · 10 6
3,8 · 10 3 0,5 · 10 6
Относительная влажность воздуха, находящегося в герметично закрытом сосуде при температуре t 1 =10 0 C, равна j 1 = 80%.

«Физика - 10 класс»

Какие физические объекты (системы) изучает молекулярная физика?
Как различить механические и тепловые явления?

В основе молекулярно-кинетической теории строения вещества лежат три утверждения:

1) вещество состоит из частиц;
2) эти частицы беспорядочно движутся;
3) частицы взаимодействуют друг с другом.

Каждое утверждение строго доказано с помощью опытов.

Свойства и поведение всех без исключения тел определяются движением взаимодействующих друг с другом частиц: молекул, атомов или ещё более малых образований - элементарных частиц.

Оценка размеров молекул. Для полной уверенности в существовании молекул надо определить их размеры. Проще всего это сделать, наблюдая расплывание капельки масла, например оливкового, по поверхности воды. Масло никогда не займёт всю поверхность, если мы возьмём достаточно широкий сосуд (рис. 8.1). Нельзя заставить капельку объёмом 1 мм 2 расплыться так, чтобы она заняла площадь поверхности более 0,6 м 2 . Предположим, что при растекании масла по максимальной площади оно образует слой толщиной всего лишь в одну молекулу - «мономолекулярный слой». Толщину этого слоя нетрудно определить и тем самым оценить размеры молекулы оливкового масла.

Объём V слоя масла равен произведению его площади поверхности S на толщину d слоя, т. е. V = Sd. Следовательно, линейный размер молекулы оливкового масла равен:

Современные приборы позволяют увидеть и даже измерить отдельные атомы и молекулы. На рисунке 8.2 показана микрофотография поверхности кремниевой пластины, где бугорки - это отдельные атомы кремния. Подобные изображения впервые научились получать в 1981 г. с помощью сложных туннельных микроскопов.

Размеры молекул, в том числе и оливкового масла, больше размеров атомов. Диаметр любого атома примерно равен 10 -8 см. Эти размеры так малы, что их трудно себе представить. В таких случаях прибегают к помощи сравнений.

Вот одно из них. Если пальцы сжать в кулак и увеличить его до размеров земного шара, то атом при том же увеличении станет размером с кулак.

Число молекул.


При очень малых размерах молекул число их в любом макроскопическом теле огромно. Подсчитаем примерное число молекул в капле воды массой 1 г и, следовательно, объёмом 1 см 3 .

Диаметр молекулы воды равен примерно 3 10 -8 см. Считая, что каждая молекула воды при плотной упаковке молекул занимает объём (3 10 -8 см) 3 , можно найти число молекул в капле, разделив объём капли (1 см 3) на объём, приходящийся на одну молекулу:


Масса молекул.


Массы отдельных молекул и атомов очень малы. Мы вычислили что в 1 г воды содержится 3,7 10 22 молекул. Следовательно, масса одной молекулы воды (Н 2 0) равна:

Массу такого же порядка имеют молекулы других веществ, исключая огромные молекулы органических веществ; например, белки имеют массу, в сотни тысяч раз большую, чем масса отдельных атомов. Но всё равно их массы в макроскопических масштабах (граммах и килограммах) чрезвычайно малы.


Относительная молекулярная масса.


Так как массы молекул очень малы, удобно использовать в расчётах не абсолютные значения масс, а относительные.

По международному соглашению массы всех атомов и молекул сравнивают с массы атома углерода (так называемая углеродная шкала атомных масс).

Относительной молекулярной (или атомной) массой М r вещества называют отношение массы m 0 молекулы (или атома) данного вещества к массы атома углерода:

Относительные атомные массы всех химических элементов точ- но измерены. Складывая относительные атомные массы элементов, входящих в состав молекулы вещества, можно вычислить относительную молекулярную массу вещества. Например, относительная молекулярная масса углекислого газа СO 2 приближённо равна 44, так как относительная атомная масса углерода практически равна 12, а кислорода примерно 16: 12 + 2 16 = 44.

Сравнение атомов и молекул с массы атома углерода было принято в 1961 г. Главная причина такого выбора состоит в том, что углерод входит в огромное число различных химических соединений. Множитель введён для того, чтобы относительные массы атомов были близки к целым числам.

И подраздела , в которой в общих чертах рассмотрели современные способы фильтрации, основанные на принципе сита. И намекнули, что мембранные очистители очищают воду с различным качеством, которое зависит от размера "ячеек", которые называются поры, в этих мембранах-ситах. Соответственно, микрофильтрация воды — это первая технология из мембранных систем очистки воды, которую мы рассмотрим.

Микрофильтрация воды — очистка воды на уровне крупных молекул (макромолекул), таких как частицы асбеста, краска, угольная пыль, цисты простейших, бактерии, ржавчина. Тогда как макрофильтрация ( воды) затрагивает песок, крупные частицы ила, крупные частицы ржавчины и т.д.

Можно ориентировочно сказать, что размеры частиц, которые отсеивает макрофильтрация — это частицы крупнее 1 микрометра (если используется специальный одномикронный картридж). Тогда как размер частиц, которые удаляет микрофильтрация — это частицы от 1 микрона до 0,1 микрона .

Вы можете задать вопрос: "Но если удаляются частицы до 0,1 микрона, то разве частицы размером в 100 микрон не смогут быть задержаны с помощью микрофильтрации? Зачем писать "от 1 микрона до 0,1 микрона" — это же противоречие?"

На самом деле особого противоречия нет. Действительно, микрофильтрация воды удалит как бактерий, так и огромные куски песка. Но цель микрофильтрации — это не удаление крупных кусков песка. Цель микрофильтрации — как "удалить частицы в указанном диапазоне размеров". Тогда как бо льшие частицы просто забьют очиститель и приведут к дополнительным затратам.

Итак, переходим к характеристике микрофильтрации воды.

Поскольку при микрофильтрации удаляются частицы размерами 0,1-1 микрон, то можно сказать, что микрофильтрация — это мембранная технология очистки воды, которая происходит на мембранах-ситах с диаметром ячеек-пор 0,1-1 микрон. То есть, на таких мембранах удаляются все вещества, которые больше 0,5-1 мкм:

То, насколько полно они удаляются, зависит от диаметра пор и действительного размера, скажем, бактерий. Так, если бактерия длинная, но тонкая, то она с лёгкостью пролезет через поры микрофильтрационной мембраны. А более толстая сферическая бактерия останется на поверхности "сита".

Чаще всего микрофильтрация применяется в пищевой промышленности (для обезжиривания молока, концентрирования соков) и в медицине (для первичной подготовки лекарственного сырья). Также микрофильтрация используется в промышленной очистке питьевой воды — преимущественно в западных странах (например, в Париже). Хотя ходят слухи, что одна из водоочистных станций в Москве также использует технологию микрофильтрации. Возможно, это правда 🙂

Но также существуют и бытовые фильтры на основе микрофильтрации.

Наиболее распространённый пример — трековые микрофильтрационные мембраны . Трековые от слова "трек", то есть след, и это название связано с тем, как мембраны данного типа изготавливаются. Процедура очень проста:

  1. Полимерная плёнка бомбардируется частицами, которые за счёт своей собственной большой энергии прожигают в плёнке следы — углубления примерно одинакового размера, поскольку частицы, которыми бомбардируется поверхность, имеют одинаковый размер.
  2. Затем эта полимерная плёнка протравливается в растворе, например, кислоты, чтобы следы от ударов частиц стали сквозными.
  3. Ну а потом простая процедура сушки и фиксации полимерной плёнки на подложке — и всё, трековая микрофильтрационная мембрана готова!

В результате эти мембраны отличаются фиксированным диаметром пор и незначительной пористостью по сравнению с другими мембранными системами очистки воды. И вывод: на данных мембранах будут удаляться частицы только под определённый размер.

Также существует более навороченый вариант микрофильтрационных бытовых мембран — микрофильтрационные мембраны с напылением из активированного угля . То есть, в перечисленные выше шаги входит ещё один шаг — нанесение тонкого слоя из . На этих мембранах удаляются не только бактерии и механические примеси, но и

  • запах,
  • органические вещества,
  • и т.д.

Нужно учитывать, что для микрофильтрационных мембран есть опасность . Так, бактерии, которые не прошли через мембрану, начинают жить на этой мембране и выдавать продукты своей жизнедеятельности в очищенную воду. То есть, возникает вторичное отравление воды . Для того, чтобы избежать этого, необходимо следовать инструкциям производителя по регулярной дезинфекции мембран.

Вторая опасность — это то, что бактерии начнут самостоятельно есть эти мембраны . И сделают в них огромные дырки, которые будут пропускать те вещества, которые мембрана должна задерживать. Чтобы этого не происходило, следует приобретать фильтры на основе устойчивого к бактериям вещества (например, керамические микрофильтрационные мембраны) или же быть готовым к частым заменам микрофильтрационных мембран.

Частая замена микрофильтрационных мембран подстёгивается так же тем, что они не оборудованы механизмом промывок . И поры мембраны попросту забиваются грязью. Мембраны выходят из строя.

В принципе, про микрофильтрацию всё. Микрофильтрация — достаточно качественный способ очистки воды. Однако,

Действительное назначение микрофильтрации — не подготовка воды для питья (в связи с опасностью бактериального загрязнения), а предварительная подготовка воды перед следующими стадиями.

Этап микрофильтрации снимает с последующих стадий водоочистки большую часть нагрузки.

По материалам Как выбрать фильтр для воды : http://voda.blox.ua/2008/07/Kak-vybrat-filtr-dlya-vody-22.html

Хотелось бы рассказать о важных вещах, которые редко разъясняются на сайтах компаний, реализующих очистительные системы, а ведь гораздо приятнее понимать, о чем идет речь, выбирая фильтр для своей семьи или на работу. В этом обзоре представлены некоторые важные аспекты, которые нужно учитывать при выборе фильтра.

Что такое микрон и нанометр?

Если Вы искали фильтр для воды, то скорее всего сталкивались с названием "микрон". Когда речь идет о механических картриджах, часто можно увидеть такие фразы, как "блок фильтрует грубые частички загрязнений размерами до 10 микрон и более". Но сколько же это - 10 микрон? Хотелось бы знать, какие загрязнения и примести картридж, рассчитанный на 10 микрон, пропустит. Касательно мембран (будь то проточный фильтр или обратный осмос) используется другой термин - нанометр, тоже сложный для представления размер. Один микрон - это 0,001 миллиметра, то есть если условно разделить один миллиметр на 1000 делений, то как раз получим 1 микрон. Нанометр - это 0,001 микрона, то есть по сути одна миллионная миллиметра. Названия «микрон» и «нанометр» придуманы для упрощения представления столь малых чисел.

Микроны чаще всего используются для представления глубины фильтрации, производимой полипропиленовыми или угольными картриджами, нанометры - для представления уровня фильтрации, производимой ультрафильтрационными или обратноосмотическими мембранами.

Чем отличаются фильтры для воды ?

Существует 3 основных типа фильтров: проточные, проточные с ультрафильтрационной мембраной (мембранные) и фильтры обратного осмоса. В чем главное различие этих систем? Проточный фильтр можно считать базовой очисткой, так как он редко очищает воду до состояния питьевой - то есть в отличие от двух других типов фильтров, после проточного воду нужно кипятить перед употреблением (исключением являются системы, содержащие материал Арагон, Аквален и Ecomix). Мембранные фильтры - фильтры с ультрафильтрационной мембраной очищают воду от всех типов загрязнений, однако оставляют нетронутым солевой баланс воды - то есть в воде остается естественный кальций, магний и другие минералы. Обратноосмотическая система очищает воду полностью, включая минералы, бактерии, соли - на выходе фильтра вода содержит, как ни странно, исключительно молекулы воды.

Хлор - самый хитрый из загрязнителей воды

Обычно, чтобы очистить воду от загрязнителя мембранной системой, поры мембраны должны быть меньше, чем размеры элемента. Однако это не работает с хлором, так как размеры его молекулы равны размерам молекулы воды и если сделать поры мембраны меньше, чем размеры хлора - то и вода тоже пройти не сможет. Вот такой парадокс. Поэтому все обратноосмотические системы в составе предфильтров и в качестве постфильтра имеют угольные картриджи, которые тщательно очищают хлор из воды. Причем заметьте, так как главная "головная боль" украинской воды - это именно хлор, если Вы хотите купить обратный осмос, стоит подбирать систему с двумя угольными картриджами в предфильтре - это говорит о качестве очистки.

Надеемся представленная информацию стала полезной для Вас. Больше информации можно найти на сайте

Кикоин А.К. Простой способ определения размеров молекул // Квант. - 1983. - № 9. - C.29-30.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

В молекулярной физике главные «действующие лица» - это молекулы, невообразимо маленькие частицы, из которых состоят все на свете вещества. Ясно, что для изучения многих явлений важно знать, каковы они, молекулы. В частности каковы их размеры.

Когда говорят о молекулах, их обычно считают маленькими упругими твердыми шариками. Следовательно, знать размер молекул значит знать их радиус.

Несмотря на малость молекулярных размеров, физики сумели разработать множество способов их определения. В «Физике 9» рассказывается о двух из них. В одном используется свойство некоторых (очень немногих) жидкостей растекаться в виде пленки толщиной в одну молекулу. В другом размер частицы определяется с помощью сложного прибора - ионного проектора.

Существует, однако, очень простой, хотя и не самый точный, способ вычисления радиусов молекул (или атомов) Он основан на том, что молекулы вещества, когда оно находится в твердом или жидком состоянии, можно считать плотно прилегающими друг к другу. В таком случае для грубой оценки можно считать, что объем V некоторой массы m вещества просто равен сумме объемов содержащихся в нем молекул. Тогда объем одной молекулы мы получим, разделив объем V на число молекул N .

Число молекул в теле массой m равно, как известно, \(~N_a \frac{m}{M}\), где М - молярная масса вещества N A - число Авогадро. Отсюда объем V 0 одной молекулы определяется из равенства

\(~V_0 = \frac{V}{N} = \frac{V M}{m N_A}\) .

В это выражение входит отношение объема вещества к его массе. Обратное же отношение \(~\frac{m}{V} = \rho\) есть плотность вещества, так что

\(~V_0 = \frac{M}{\rho N_A}\) .

Плотность практически любого вещества можно найти в доступных всем таблицах. Молярную массу легко определить, если известна химическая формула вещества.

\(~\frac{4}{3} \pi r^3 = \frac{M}{\rho N_A}\) .

откуда мы и получаем выражение для радиуса молекулы:

\(~r = \sqrt {\frac{3M}{4 \pi \rho N_A}} = \sqrt {\frac{3}{4 \pi N_A}} \sqrt {\frac{M}{\rho}}\) .

Первый из этих двух корней - постоянная величина, равная ≈ 7,4 · 10 -9 моль 1/3 , поэтому формула для r ринимает вид

\(~r \approx 7,4 \cdot 10^{-9} \sqrt {\frac{M}{\rho}} (m)\) .

Например, радиус молекулы воды, вычисленный по этой формуле, равен r В ≈ 1,9 · 10 -10 м.

Описанный способ определения радиусов молекул не может быть точным уже потому, что шарики нельзя уложить так, чтобы между ними не было промежутков, даже если они соприкасаются друг с другом. Кроме того, при такой «упаковке» молекул- шариков были бы невозможны молекулярные движения. Тем не менее вычисления размеров молекул по формуле, приведенной выше, дают результаты, почти совпадающие с результатами других методов, несравненно более точных.