Непредельные углеводороды. Алкины. Ацетилен: химические свойства, получение, применение, меры предосторожности

Жидкий

Ацетилен — ненасыщенный углеводород C 2 H 2 . Имеет тройную связь между т омами углерода, принадлежит к классу алкинов.

Физические свойства

При нормальных условиях — бесцветный газ, малорастворим в воде, легче воздуха. Температура кипения −83,8 °C. При сжатии разлагается со взрывом, хранят в баллонах, заполненных кизельгуром или активированным углем, пропитанным ацетоном, в котором ацетилен растворяется под давлением в больших количествах.Взрывоопасный. Нельзя выпускать на открытый воздух. Частицы C 2 H 2 есть на Уране и Нептуне.

Химические свойства

Ацетилено-кислородное пламя(температура «ядра» 3300 °C)

Для ацетилена (этина) характерны реакции присоединения:

HC≡CH + Cl 2 -> СlСН=СНСl

Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекулавысокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м³. При сгорании температура пламени достигает 3300°С. Ацетилен можетполимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в 400 °C.

Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так ацетилен вытесняет метаниз эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра иодновалентной меди.

Ацетилен обесцвечивает бромную воду и раствор перманганата калия.

Основные химические реакции ацетилена (реакции присоединения, сводная таблица 1.) :

История

Открыт в 1836 г. Э. Дэви, синтезирован из угля и водорода (дуговой разряд между двумя угольными электродами в атмосфере водорода) М. Бертло (1862 г.).

Способ производства

В промышленности ацетилен часто получают действием воды на карбид кальция см. видео данного процесса (Ф. Вёлер, 1862 г.), а также при дегидрировании двух молекул метана при температуре свыше 1400° Цельсия.

Применение

Ацетиленовая лампа

Ацетилен используют:

  • для сварки и резки металлов,
  • как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (см. карбидка),
  • в производстве взрывчатых веществ (см. ацетилениды),
  • для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.

Безопасность

Поскольку ацетилен растворим в воде и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры. Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3-80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например N 2 , метаном или пропаном. При длительном соприкосновении ацетилена с медью или серебром образуется взрывчатая ацетиленистая медь или ацетиленистое серебро, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов). Ацетилен обладает слабым токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03 "Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест". ПДКр.з. (рабочей зоны) не установлен (по ГОСТ 5457-75 и ГН 2.2.5.1314-03), т.к. концентрационные пределы распределения пламени в смеси с воздухом составляет 2,5-100%. Хранят и перевозят его в заполненных инертной пористой массой (например, древесным углем) стальных баллонах белого цвета (с красной надписью «А») в виде раствора в ацетоне под давлением 1,5-2,5 МПа.

Синтетический каучук, этиловый спирт, уксусная кислота, поливинилхлоридные смолы, бензол - это далеко не полный перечень важнейших химических соединений. Их производит промышленность органического синтеза. Получают эти продукты из ацетилена. Химические свойства ненасыщенных углеводородов с тройной связью, к которым относится данное вещество, обуславливают их способность к реакциям присоединения, окисления и полимеризации. Отдельно нужно сказать о высокой энергоемкости газа.

Поэтому этин в смеси с кислородом применяется в сварке металлических деталей. Они могут быть изготовлены из чугуна, стали и цветных металлов. Горение ацетилена можно контролировать, что является большим преимуществом. Вещество используют в качестве сырья для производства полимеров, растворителей, волокон и других ценных материалов. Наличие двойных связей в молекуле обеспечивает способность к присоединению атомов других химических элементов. При сгорании соединения выделяется много тепла. В нашей статье мы подробно изучим перечисленные выше химические свойства ацетилена, называемого еще этином, а также выясним способы получения его в промышленности.

Как строение молекулы обуславливает свойства органического вещества

Линейная молекула этина содержит в своем составе два атома углерода, связанных между собой одной сигма- и двумя пи-связями. Углеродные атомы находятся в состоянии sp-гибридизации. Два атома водорода вместе с углеродным скелетом располагаются в плоскости молекулы, а двойные связи ориентированы во взаимно перпендикулярных плоскостях. Такие реакции ацетилена, как окисление бромной воды или присоединение галогеноводородов, происходят по месту разрыва пи-связей. По сравнению с веществами ряда этилена, эти процессы протекают у алкинов намного активнее. Это обусловлено присутствием в их молекулах тройной связи. Она же объясняет и тот факт, что реакция присоединения осуществляется в две стадии: сначала образуются соединения ряда этена, затем - конечный продукт, относящийся к предельным углеводородам или их галогенопроизводным.

Физическая характеристика и получение

Агрегатная форма этина при обычных условиях - газ. Ацетилен легче воздуха и плохо растворяется в воде. Его формула - C 2 H 2 , молекулярная масса - 26 г/моль. Вещество кипит при температуре порядка 83,8 °C. Как любой газ, может сжиматься под давлением, но процесс сопровождается взрывом. Соединение очень энергоемко, удельная теплота сгорания равна 14000 ккал/м 3 . Ацетилен получают из карбида кальция или этана.

Основной и экономически выгодный промышленный способ получения углеводорода - это пиролиз. Он имеет несколько разновидностей, среди которых наиболее перспективными считаются гомогенный и окислительный процессы. Исходным сырьем в них служит метан, молекулы которого дегидрируют. Достаточно давно в химии применяют карбидный метод. Здесь реагируют между собой карбид кальция и вода. Ацетилен, полученный этим способом, что очень важно, практически не содержит примесей. Однако сам процесс энергоемок и требует больших расходов электроэнергии.

Реакция гидрирования

Примером гетерогенной каталитической реакции, характерной для непредельных углеводородов с тройной связью между атомами углерода, может служить взаимодействие их с водородом. Нагревание и наличие никелевого катализатора - это главные условия проведения гидрирования. Как мы уже говорили ранее, для химических свойств ацетилена присущи реакции присоединения. Они проходят в два этапа.

Сначала происходит разрыв одной пи-связи и к свободным валентностям углеродных атомов присоединяются два атома водорода. Образуется алкен, в данном случае - этилен. Затем происходит разрушение одной непредельной связи в его молекуле и возникает предельное соединение - этан. Ацетилен, как мы видим, в результате гидрирования полностью утратил двойные связи и превратился в

Качественная реакция на этин

В органической химии применяют реакции, с помощью которых определяют присутствие в веществе определенного комплекса атомов или вида химической связи. Они называются качественными. Чтобы доказать в молекулах алкинов наличие двух непредельных пи-связей, используют такой реактив, как бромная вода. Ацетилен пропускают через бурый раствор Br 2 и наблюдают его обесцвечивание. Получают продукт - тетрабромэтан, который относится к веществам - галогенопроизводным насыщенных углеводородов.

Поливинилхлоридные смолы

Важное практическое значение имеет реакция присоединения к этину хлороводорода, которая на первой стадии завершается образованием хлорвинила. Его молекулы сохраняют в своем составе двойную связь, что обеспечивает их способность к соединению друг с другом и формированию полимера.

Химические свойства ацетилена, в особенности реакция полимеризации его производного - хлорвинила, обеспечили возможность создания целой группы веществ с уникальными техническими характеристиками. Например, термовиль и фибровиль - волокна, применяемые для получения сверхпрочных тканей, используемых в пошиве спецодежды. Современные строительные, дренажные и отделочные работы невозможно представить без поливинилхлоридных труб, пенопластов и напольных покрытий. Они легкие, прочные, устойчивые к коррозии и значительно дешевле изделий из натуральных материалов: металла или древесины.

Реакция М. Г. Кучерова

Говоря о хорошо известных химических свойствах вещества, например, реакциях полимеризации, присоединения или горения ацетилена, мы упоминали о том, что газ практически нерастворим в воде. Однако в присутствии нитрата или сульфата ртути в качестве катализатора происходит реакция, впервые проведенная еще в XIX веке известным российским ученым М. Г. Кучеровым. В ней продуктом взаимодействия между водой и этином является уксусный альдегид. Он, в свою очередь, относится к соединениям, наиболее востребованным в промышленности, так как служит сырьем для получения этилового спирта в реакции восстановления.

Если же ацетальдегид окислить, то получим еще одно важное органическое вещество - уксусную кислоту. В последнее время реакция М. Г. Кучерова применяется в меньших масштабах по причине токсичности используемого катализатора. Сейчас все чаще в качестве исходного сырья используют этан. Ацетилен получают в результате его дегидрогенизации.

В нашей статье мы рассмотрели основные химические свойства и получение ацетилена, а также его применение в промышленности.

Бесцветный газ, слаборастворимый в воде, несколько легче атмосферного воздуха, относящийся к классу алкинов и представляющий собой ненасыщенный углерод называют ацетиленом. В его структуре все атомы имеют между собой тройную связь. Это вещество закипает при температуре — 830 °С. Формула ацетилена говорит о том, что в его состав входят только углерод и водород.

Ацетилен – это опасное вещество, которое при неаккуратном обращении с ним может взорваться. Именно поэтому для хранения этого вещества используют специально оснащенные емкости. Газ при соединении с кислородом горит, и температура может достигать 3150 °С.

Ацетилен можно получить в лабораторных и промышленных условиях. Для получения ацетилена в лаборатории достаточно на карбид кальция (это его формула — СаС 2) капнуть небольшое количество воды. после этого начинается бурная реакция выделения ацетилена. Для ее замедления допустимо использовать поваренную соль (формула NaCl).

В промышленных условиях все несколько сложнее. Для производства ацетилена применяют пиролиз метана, а так же пропана, бутана. В последнем случае формула ацетилена будет содержать большое количество примесей.

Карбидный способ производства ацетилена обеспечивает производство чистого газа. Но, такой метод получения продукта должен быть обеспечен большим количеством электроэнергии.

Пиролиз не требует большого количества электричества, все дело в том, что для производства газа, необходимо выполнить нагрев реактора и для этого используют газ, циркулирующий в первом контуре реактора. Но в потоке, который там перемещается, концентрация газа довольно мала.

Выделение ацетилена с чистой формулой во втором случае не самая простая задача и ее решение обходится довольно дорого. Существует несколько способов производства формулы ацетилена в промышленных условиях.

Электрический крекинг

Превращение метана в ацетилен происходит в электродуговой печи, при этом ее нагревают до температуры в 2000-3000 °С. При этом, напряжение на электродах достигает 1 кВ. Метан разогревают до 1600 °С. Для получения одной тонны ацетилена необходимо затратить 13 000 кВт×ч. Это существенный недостаток производства формулы ацетилена.

Пиролиз окислительный

Этот способ основан на перемешивании метана и кислорода. После производства смеси, часть ее отправляют на сжигание и полученное тепло отправляют на нагревание сырья до температуры в 16000 °С. Такой процесс отличается непрерывностью и довольно скромными затратами электрической энергии. На сегодня этот метод чаще всего можно встретить на предприятиях по производству ацетилена.

Кроме перечисленных технологий производства формулы ацетилена применяют такие как — гомогенный пиролиз, низкотемпературную плазму. Все они отличаются количеством энергетических затрат и в итоге разными характеристиками получаемого газа и его формулой.

Преимущества

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую температуру горения пламени. Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий. Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет получить следующие преимущества:

  • максимальная температура пламени;
  • существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
  • довольно низкая стоимость, в сравнении с другими горючими газами.

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Формула ацетилена

Ацетилен имеет простую формулу — С 2 Н 2 . Относительно дешевый способ его получения путем перемешивания воды и карбида кальция сделал его самым применяемым газом для соединения металлов. Температура с которой горит смесь кислорода и ацетилена вынуждает выделяться твердые частицы углерода.

Ацетилен можно доставить к месту выполнения работ в специальных емкостях (газовых баллонах), а можно получить его непосредственно на рабочем месте используя для этого специально сконструированный реактор. Где происходит смешивание воды и карбида кальция.

Химические и физические свойства

Некоторые химические свойства

Свойства ацетилена во многом определены его формулой. То есть наличием атомов углерода и водорода связанных между собой.

Смешивание ацетилена с водой, при добавлении катализаторов типа солей ртути, приводит к получению уксусного альдегида. Тройная связь атомов, содержащихся в молекуле ацетилена приводит к тому, что при сгорании она выделяет 14 000 ккал/куб. м. В процессе сгорания температура поднимается до 3000 °C.

Этот газ, при соблюдении определенных условий, может превращаться в бензол. Для этого необходимо разогреть его до 4000 °С и добавить графит.

Молярная масса ацетилена составляет 26,04 г/моль. Плотность ацетилена 1,1 кг/м³.

Физические свойства

В стандартных условиях ацетилен представляет собой бесцветный газ, который практически не растворяется в воде. Он начинает кипеть в -830 °С. При сжимании он начинает разлагаться с выделением большого количества энергии. Поэтому для его хранения применяют стальные баллоны способные хранить газ под высоким давлением.

Этот газ недопустимо выпускать в атмосферу. Его формула может отрицательно сказываться на окружающей среде.

Технология и режимы сварки

Ацетилено — кислородные смеси применяют для соединения деталей из углеродистых и низколегированных сталей. Например, этот метод широко применяют для создания неразъемных соединений трубопроводов. Например, труб диаметром 159 мм с толщиной стенок не более 8 мм. Но существуют и некоторые ограничения, так соединение таким методом сталей марок 12×2M1, 12×2МФСР недопустимо.



Выбор параметров режима

Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.

Расход смеси с формулой кислород/ацетилен составляет 100-130 дм 3 /час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр

Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.

Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:

  • толщину стенки свариваемых заготовок;
  • вид сварки — левый, правый;

На основании этого можно определить диаметр присадочной проволоки и подобрать расход ацетилена. К примеру, толщина составляет 5-6 мм, для выполнения работ будет использован наконечник № 4. То есть на основании табличных данных диаметр проволоки будет составлять для левой сварки 3,5 мм, для правой 3. Расход ацетилена в таком случае будет составлять при левом способе 60 -780 дм 3 /час, при правом 650-750 дм 3 /час.

Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва. По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй. Его укладывают только после того, как выполнен корень шва по всей заданной длине.

Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.

Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.

При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.

Виды ацетилена

Промышленность выпускает два вида ацетилена — твердый и в виде газа.

Газообразный

Ацетилен обладает резким запахом и это дает определённые преимущества при его утечке. По своей массе он близок к атмосферному воздуху.

Жидкий

Жидкий ацетилен не обладает ни каким цветом. У него есть одна особенность он преломляет цвет. Ацетилен и жидкий, и газообразный, представляет собой опасное вещество. То есть при нарушении правил обращения с ним взрыв может произойти в любую секунду, даже при комнатной температуре. Для повышения безопасности при обращении с ним, применяют так называемую флегматизацией. То есть в ёмкости, предназначенной для хранения ацетилена размещают пористое вещество. Которое снижает его опасность

Реакции ацетилена

Ацетилен вступает в реакцию с различными соединениями, например, солями меди и серебра. В результате таких взаимодействий получают вещества под названием ацетилениды. Их отличительная черта — взрывоопасность.


Горение ацетилена

Реакция полимеризации

Использование ацетилена

Кроме сварки ацетилен применяют в следующих случаях:


Стандарты

Производители ацетилена руководствуются при его получении требованиями ГОСТ 5457-75. В нем определены требования к газообразному и жидкому ацетилену.

Скачать ГОСТ 5457-75

Ацетилен (или по международной номенклатуре - этин) - это непредельный углеводород, принадлежащий к классу алкинов. Химическая формула ацетилена - C 2 H 2 . Атомы углерода в молекуле соединены тройной связью. Он является первым в своем гомологическом ряду. Представляет собой бесцветный газ. Очень огнеопасен.

Получение

Все методы промышленного получения ацетилена сходятся к двум типам: гидролиз карбида кальция и пиролиз различных углеводородов. Последний требует меньших энергозатрат, но чистота продукта довольно низкая. У карбидного метода - наоборот.

Суть пиролиза заключается в том, что метан, этан или другой легкий углеводород при нагреве до высоких температур (от 1000 °C) превращается в ацетилен с выделением водорода. Нагрев может осуществятся электрическим разрядом, плазмой или сжиганием части сырья. Но проблема состоит в том, что в результате реакции пиролиза может образовываться не только ацетилен, но и еще множество разных продуктов, от которых необходимо впоследствии избавляться.

2CH 4 → C 2 H 2 + 3H 2

Карбидный метод основан на реакции взаимодействия карбида кальция с водой. Карбид кальция получают из его оксида, сплавляя с коксом в электропечах. Отсюда и такой высокий расход энергии. Зато чистота ацетилена, получаемого таким способом, крайне высока (99,9 %).

CaC 2 + H 2 O → C 2 H 2 + Ca(OH) 2

В лаборатории ацетилен также можно получить дегидрогалогенированием дигалогенпроизводных алканов с помощью спиртового раствора щелочи.

CH 2 Cl-CH 2 Cl + 2KOH → C 2 H 2 + 2KCl + 2H 2 O

Физические свойства ацетилена

Ацетилен - это газ без цвета и запаха. Хотя примеси могут давать ему чесночный запах. Практически не растворим в воде, немного растворим в ацетоне. При температуре -83,8 °C сжижается.

Химические свойства ацетилена

Исходя из тройной связи ацетилена, для него будут характерны реакции присоединения и реакции полимеризации. Атомы водорода в молекуле ацетилена могут замещаться другими атомами или группами. Поэтому можно сказать, что ацетилен проявляет кислотные свойства. Разберем химические свойства ацетилена на конкретных реакциях.

  • Гидрирование. Осуществляется при высокой температуре и в присутствии катализатора (Ni, Pt, Pd). На палладиевом катализаторе возможно неполное гидрирование.
  • Галогенирование. Может быть как частичным, так и полным. Идет легко даже без катализаторов или нагревания. На свету хлорирование идет с взрывом. При этом ацетилен полностью распадается до углерода.

  • Присоединение к уксусной кислоте и этиловому спирту. Реакции идут только в присутствии катализаторов.

  • Присоединение синильной кислоты.

CH≡CH + HCN → CH 2 =CH-CN

Реакции замещения:

  • Взаимодействие ацетилена с металл-органическими соединениями.

CH≡CH + 2C 2 H 5 MgBr → 2C 2 H 6 + BrMgC≡CMgBr

  • Взаимодействие с металлическим натрием. Необходима температура 150 °C или предварительное растворение натрия в аммиаке.

2CH≡CH + 2Na → 2CH≡CNa + H 2

  • Взаимодействие с комплексными солями меди и серебра.

  • Взаимодействие с амидом натрия.

CH≡CH + 2NaNH 2 → NaC≡CNa + 2NH 3

  • Димеризация. При этой реакции две молекулы ацетилена объединяются в одну. Необходим катализатор - соль одновалентной меди.
  • Тримеризация. В этой реакции три молекулы ацетилена образуют бензол. Необходим нагрев до 70 °C, давление и катализатор.
  • Тетрамеризация. В результате реакции получается восьмичленный цикл - циклооктатетраен. Для этой реакции также требуется небольшой нагрев, давление и соответствующий катализатор. Обычно это комплексные соединения двухвалентного никеля.

Это далеко не все химические свойства ацетилена.

Применение

Структурная формула ацетилена указывает нам на довольно прочную связь между атомами углерода. При ее разрыве, например при горении, выделяется очень много энергии. По этой причине ацетиленовое пламя обладает рекордно высокой температурой - около 4000 °C. Его используют в горелках для сварки и резки металла, а также в ракетных двигателях.

Пламя горения ацетилена имеет также очень высокую яркость, поэтому его часто используют в осветительных приборах. Используется он и во взрывотехнике. Правда, там применяется не сам ацетилен, а его соли.

Как видно из разнообразных химический свойств, ацетилен может применяться как сырье для синтеза других важных веществ: растворителей, лаков, полимеров, синтетических волокон, пластмасс, органического стекла, взрывчатых веществ и уксусной кислоты.

Безопасность

Как уже говорилось, ацетилен - огнеопасное вещество. С кислородом или воздухом он способен образовывать крайне легковоспламеняющиеся смеси. Чтобы вызвать взрыв, достаточно одной искры от статического электричества, нагрева до 500 °C или небольшого давления. При температуре 335 °C чистый ацетилен самовоспламеняется.

Из-за этого ацетилен хранят в баллонах под давлением, которые наполнены пористым веществом (пемза, активированный уголь, асбест). Таким образом, ацетилен распределяется по порам, уменьшая риск взрыва. Часто эти поры пропитывают ацетоном, из-за чего образуется раствор ацетилена. Иногда ацетилен разбавляют другими, более инертными газами (азот, метан, пропан).

Этот газ обладает и токсичным действием. При его вдыхании начнется интоксикация организма. Признаками отравления являются тошнота, рвота, шум в ушах, головокружение. Большие концентрации могут приводить даже к потере сознания.

Темазанятия по КТП №37 Алкины. Ацетилен его строение и свойства

Цель Сформировать понятие о непредельных углеводородах (алкинах). Познакомить студентов со строением и свойствами алкинов на примере ацетилена

Систематизировать и обобщить знания о придельных углеводородах и дать сравнительную характеристику алканов, алкенов и алкинов.

Ацетилен и его гомологи

Углеводороды с общей формулой CnH2n-2 , в молекулах которых имеется одна тройная связь, относятся к ряду ацетилена. По международной номенклатуре углеводороды ряда ацетилена называют алкинами . Подобно углеводородам ряда этилена, формулы углеводородов ряда ацетилена можно вывести из формул предельных углеводородов. Их названия образуются путём замены суффикса -АН на -ИН.

Простейшие гомологи ацетилена

Физические свойства

Ацетилен- газ легче воздуха, мало растворим в воде, в чистом виде почти без запаха. Изменения физических свойств углеводородов ряда ацетилена (так же как у алканов и алкенов) подчиняются общим закономерностям: при увеличении относительной молекулярной массы повышается температура кипения веществ.

Химические свойства

Для ацетилена и его гомологов характерны реакции присоединения, окисления и полимеризации.
1. Реакции присоединения
Углеводороды ряда ацетилена реагируют с галогенами. Например, ацетилен обесцвечивает бромную воду. Присоединение брома происходит в две стадии:

При повышенной температуре ацетилен присоединяет водород. Гидрирование ацетилена тоже происходит в две стадии:

Ацетилен реагирует также со сложными веществами. Например, в присутствии сульфата ртути (II) ацетилен присоединяет воду, и образуется ацетальдегид (уксусный альдегид):

Если к ацетилену присоединяется хлороводород, то образуется газообразное вещество винилхлорид, или хлорвинил:

Винилхлорид способен полимеризоваться:

2.Реакции окисления
Ацетилен обесцвечивает раствор перманганата калия.
На воздухе ацетилен горит коптящим пламенем.

3. Реакции полимеризации
Ацетилен может полимеризоваться в бензол:

Получение

В лаборатории и в промышленности ацетилен получают при взаимодействии карбида кальция с водой:

Применение

1 Для резки и сварки металлов;
2 для получения искусственных волокон,
3 красителей,
4 лаков,
5 духов и одеколонов,
6 лекарств,
7 хлоропренового каучука,
8 поливинилхлорида

Вопросы для самоконтроля