К абиотическим компонентам относятся. Влияние температуры, на растительные организмы. Развернутая характеристика абиотических факторов

Свет относится к основным факторам внешней среды. Без света невозможна фотосинтетическая деятельность растений, а без последней немыслима жизнь вообще, поскольку зеленые растения обладают способностью продуцировать необходимый для всех живых существ кислород. Кроме того, свет является единственным источником тепла на планете Земля. Он оказывает непосредственное воздействие на химические и физические процессы, происходящие в организмах, влияет на обмен веществ.

Многие морфологические и поведенческие характеристики различных организмов связаны с воздействием на них света. Деятельность некоторых внутренних органов животных также тесно связана с освещением. Поведение животных, например сезонные перелеты, кладка яиц, ухаживание за самками, весенний гон, связано с продолжительностью светового дня.

В экологии под термином «свет» подразумевается весь диапазон солнечного излучения, достигающего земной поверхности. Спектр распределения энергии излучения Солнца за пределами земной атмосферы показывает, что около половины солнечной энергии излучается в инфракрасной области, 40 % — в видимой и 10 % — в ультрафиолетовой и рентгеновской областях.

Для живого вещества важны качественные признаки света — длина волны, интенсивность и продолжительность воздействия. Различают ближнее ультрафиолетовое излучение (400-200 нм) и дальнее, или вакуумное (200-10 нм). Источники ультрафиолетового излучения — высокотемпературная плазма, ускоренные электроны, некоторые лазеры, Солнце, звезды и др. Биологическое действие ультрафиолетового излучения обусловлено химическими изменениями поглощающих их молекул живых клеток, главным образом молекул нуклеиновых кислот (ДНК и РНК) и белков, и выражается в нарушениях деления, возникновении мутаций и гибели клеток.

Часть солнечных лучей, преодолев огромное расстояние, достигает поверхности Земли, освещает и обогревает ее. Подсчитано, что на нашу планету поступает около одной двухмиллиардной части солнечной энергии, а из этого количества лишь 0,1-0,2 % используется зелеными растениями для создания органического вещества. Каждому квадратному метру планеты достается в среднем по 1,3 кВт энергии Солнца. Ее хватило бы для работы электрического чайника или утюга.

Условия освещения играют исключительную роль в жизни растений: от интенсивности солнечного освещения зависит их продуктивность, производительность. Однако световой режим на Земле довольно разнообразный. В лесу он иной, нежели на лугу. Освещение в лиственном и темнохвойном еловом лесу заметно различается.

Свет управляет ростом растений: они растут в направлении большей освещенности. Их чувствительность к свету столь велика, что побеги некоторых растений, в течение дня содержащиеся в темноте, реагируют на вспышку света, длящуюся всего две тысячные доли секунды.

Все растения по отношению к свету можно разделить на три группы: гелиофиты, сциофиты, факультативные гелиофиты.

Гелиофиты (от греч. helios — солнце и phyton — растение), или светолюбивые растения, либо совсем не переносят, либо плохо переносят даже незначительное затенение. К данной группе относятся степные и луговые злаки, растения тундр, ранневесенние растения, большинство культурных растений открытого грунта, многие сорняки. Из видов этой группы можно отмстить подорожник обыкновенный, иван-чай, вейник тростниковидный и др.

Сциофиты (от греч. scia — тень), или теневые растения, не выносят сильного освещения и живут в постоянной тени под пологом леса. Это главным образом лесные травы. При резком осветлении лесного полога они приходят в угнетенное состояние и нередко погибают, но многие перестраивают фотосинтетический аппарат и приспосабливаются к жизни в новых условиях.

Факультативные гелиофиты , или теневыносливые растения, способны развиваться как при очень большом, так и при малом количестве света. В качестве примера можно назвать некоторые деревья — ель обыкновенную, клен остролистный, граб обыкновенный; кустарники — лешину, боярышник; травы — землянику, герань полевую; многие комнатные растения.

Важным абиотическим фактором является температура. Любой организм способен жить в пределах определенного диапазона температур. Область распространения живого в основном ограничена областью от чуть ниже 0 °С до 50 °С.

Основным источником тепла, как и света, является солнечное излучение. Организм может выживать только в условиях, к которым приспособлен его метаболизм (обмен веществ). Если температура живой клетки падает ниже точки замерзания, клетка обычно физически повреждается и гибнет в результате образования кристаллов льда. Если же температура слишком высокая, происходит денатурация белков. Именно это имеет место при варке куриного яйца.

Большинство организмов способно в той или иной степени контролировать температуру своего тела с помощью различных ответных реакций. У подавляющего числа живых существ температура тела может изменяться в зависимости от температуры окружающей среды. Такие организмы не способны регулировать свою температуру и называются холоднокровными (пойкилотермными). Их активность в основном зависит от тепла, поступающего извне. Температура тела пойкилотермных организмов связана со значениями температуры окружающей среды. Холоднокровность свойственна таким группам организмов, как растения, микроорганизмы, беспозвоночные, рыбы, рептилии и др.

Значительно меньшее количество живых существ способно к активному регулированию температуры тела. Это представители двух высших классов позвоночных — птицы и млекопитающие. Вырабатываемое ими тепло является продуктом биохимических реакций и служит существенным источником повышения температуры тела. Такая температура поддерживается на постоянном уровне независимо от температуры окружающей среды. Организмы, способные поддерживать постоянную оптимальную температуру тела независимо от температуры среды, называются теплокровными (гомойотермными). За счет этого свойства многие виды животных могут жить и размножаться при температуре ниже нуля (северный олень, белый медведь, ластоногие, пингвин). Поддержание постоянной температуры тела обеспечивается хорошей тепловой изоляцией, создаваемой меховым покровом, плотным оперением, подкожными воздушными полостями, толстым слоем жировой ткани и т.д.

Частный случай гомойотермии — гетеротермия (от греч. heteros — разный). Разный уровень температуры тела у гетеротермных организмов зависит от их функциональной активности. В период активности они обладают постоянной температурой тела, а в период отдыха или зимней спячки температура значительно понижается. Гетеротермность характерна для сусликов, сурков, барсуков, летучих мышей, ежей, медведей, колибри и др.

Особую роль в жизнедеятельности живых организмов играют условия увлажнения.

Вода — основа живой материи. Для большинства живых организмов вода является одним из главных экологических факторов. Это важнейшее условие существования всего живого на Земле. Все жизненные процессы в клетках живых организмов протекают в водной среде.

Вода химически не изменяется под действием большинства технических соединений, которые она растворяет. Это очень важно для живых организмов, поскольку необходимые их тканям питательные вещества поступают в водных растворах в сравнительно малоизмененном виде. В природных условиях вода всегда содержит то или иное количество примесей, не только взаимодействуя с твердыми и жидкими веществами, но и растворяя газы.

Уникальные свойства воды предопределяют ее особую роль в формировании физической и химической среды нашей планеты, а также в возникновении и поддержании удивительного явления — жизни.

Эмбрион человека на 97 % состоит из воды, а у новорожденных ее количество составляет 77 % массы тела. К 50 годам количество воды в теле человека уменьшается и составляет уже 60 % его массы. Основная часть воды (70 %) сосредоточена внутри клеток, а 30 % — это межклеточная вода. Мышцы человека состоят на 75 % из воды, печень — на 70, мозг — на 79, почки — на 83 %.

Тело животного содержит, как правило, не менее 50 % воды (например, слона — 70 %, гусеницы, поедающей листья растений, — 85-90 %, медузы — более 98 %).

Больше всего воды (из расчета суточной потребности) из наземных животных нужно слону — около 90 л. Слоны — одни из лучших «гидрогеологов» среди зверей и птиц: водоемы они чувствуют на расстоянии до 5 км! Только бизоны еше дальше — на 7-8 км. В засушливое время слоны роют бивнями в руслах пересохших рек ямы, куда собирается вода. Буйволы, носороги и другие африканские животные охотно пользуются слоновьими колодцами.

Распространение жизни на Земле напрямую связано с осадками. Влажность в разных точках земного шара неодинаковая. Больше всего осадков выпадает в экваториальной зоне, особенно в верхнем течении реки Амазонки и на островах Малайского архипелага. Количество их в отдельных районах достигает 12 000 мм в год. Так, на одном из Гавайских островов от 335 до 350 дней в году идут дожди. Это самое влажное место на Земле. Среднегодовое количество осадков достигает здесь 11 455 мм. Для сравнения: в тундре и пустынях выпадает менее 250 мм осадков в год.

Животные по-разному относятся к влаге. Вода как физико-химическое тело оказывает непрерывное воздействие на жизнь гидробионтов (водных организмов). Она не только удовлетворяет физиологические потребности организмов, но и доставляет кислород и пищу, уносит метаболиты, переносит половые продукты и самих гидробионтов. Благодаря подвижности воды в гидросфере возможно существование прикрепленных животных, которых, как известно, нет на суше.

Эдафические факторы

Вся совокупность физических и химических свойств почвы, оказывающих экологическое воздействие на живые организмы, относится к эдафическим факторам (от греч. edaphos — основание, земля, почва). Основные эдафические факторы — механический состав почвы (размер ее частиц), относительная рыхлость, структура, водопроницаемость, аэрируемость, химический состав почвы и циркулирующих в ней веществ (газов, воды).

Характер гранулометрического состава почвы может иметь экологическое значение для животных, которые в определенный период жизни обитают в почве или ведут роющий образ жизни. Личинки насекомых, как правило, не могут жить в слишком каменистой почве; роющие перепончатокрылые, откладывающие яйца в подземных ходах, многие саранчовые, зарывающие яйцевые коконы в землю, нуждаются в том, чтобы она была достаточно рыхлой.

Важной характеристикой почвы является ее кислотность. Известно, что кислотность среды (рН) характеризует концентрацию ионов водорода в растворе и численно равна отрицательному десятичному логарифму этой концентрации: рН = -lg. Водные растворы могут иметь рН от 0 до 14. Нейтральные растворы имеют рН 7, кислая среда характеризуется значениями рН меньше 7, а щелочная — больше 7. Кислотность может служить индикатором скорости общего метаболизма сообщества. Если показатель рН почвенного раствора низкий, это означает, что в почве содержится мало биогенных элементов, поэтому ее продуктивность крайне мала.

По отношению к плодородию почвы различают следующие экологические группы растений:

  • олиготрофы (от греч. olygos — небольшой, незначительный и trophe — питание) — растения бедных, малоплодородных почв (сосна обыкновенная);
  • мезотрофы (от греч. mesos — средний) — растения с умеренной потребностью в питательных веществах (большинство лесных растений умеренных широт);
  • эвтрофы (от греч. ей — хорошо) — растения, требующие большого количества питательных веществ в почве (дуб, лещина, сныть).

Орографические факторы

На распространение организмов по земной поверхности определенное влияние оказывают такие факторы, как особенности элементов рельефа, высота над уровнем моря, экспозиция и крутизна склонов. Они объединяются в группу орографических факторов (от греч. орос — гора). Их воздействие может сильно сказываться на местном климате и развитии почвы.

Одним из главных орографических факторов является высота над уровнем моря. С высотой снижаются средние температуры, усиливается суточный перепад температур, увеличиваются количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы оказывают воздействие на растения и животных, обусловливая вертикальную зональность.

Характерный пример — вертикальная зональность в горах. Здесь с подъемом на каждые 100 м температура воздуха понижается в среднем на 0,55 °С. Одновременно изменяется влажность, сокращается длительность вегетационного периода. С увеличением высоты местообитания существенно меняется развитие растений и животных. У подножия гор могут находиться тропические моря, а на вершине дуют арктические ветры. С одной стороны гор может быть солнечно и тепло, с другой — влажно и холодно.

Еще один орографический фактор — экспозиция склона. На северных склонах растения образуют теневые формы, на южных — световые. Растительность представлена здесь главным образом засухоустойчивыми кустарниками. Склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. С этим связаны существенные различия в прогревании воздуха и почвы, скорости таяния снега, иссушения почвы.

Важным фактором является крутизна склона. Влияние этого показателя на условия жизни организмов сказывается главным образом через особенности почвенной среды, водного и температурного режимов. Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому почвы здесь маломощные и более сухие. Если уклон превышает 35°, обычно создаются осыпи из рыхлого материала.

Гидрографические факторы

Гидрографические факторы включают такие характеристики водной среды, как плотность воды, скорость горизонтальных перемещений (течение), количество растворенного в воде кислорода, содержание взвешенных частиц, проточность, температурный и световой режимы водоемов и т.п.

Организмы, обитающие в водной среде, называются гидробионтами.

Разные организмы по-своему приспособились к плотности воды и определенным глубинам. Некоторые виды могут переносить давление от нескольких до сотен атмосфер. Многие рыбы, головоногие моллюски, ракообразные, морские звезды живут на больших глубинах при давлении около 400-500 атм.

Высокая плотность воды обеспечивает существование в водной среде многих бесскелетных форм. Это мелкие ракообразные, медузы, одноклеточные водоросли, киленогие и крылоногие моллюски и др.

Высокая удельная теплоемкость и высокая теплопроводность воды определяют более устойчивый по сравнению с сушей температурный режим водоемов. Амплитуда годовых колебаний температуры не превышает 10-15 °С. В континентальных водоемах она составляет 30-35 °С. В самих же водоемах температурные условия между верхними и нижними слоями воды значительно различаются. В глубоких слоях водной толщи (в морях и океанах) температурный режим отличается устойчивостью и постоянством (3-4 °С).

Важным гидрографическим фактором является световой режим водоемов. С глубиной количество света быстро убывает, поэтому в Мировом океане водоросли обитают только в освещенной зоне (чаще всего на глубинах от 20 до 40 м). Плотность морских организмов (их количество на единицу площади или объема) закономерно уменьшается с глубиной.

Химические факторы

Действие химических факторов проявляется в виде проникновения в окружающую среду химических веществ, отсутствовавших в ней раньше, что в значительной степени связано с современным антропогенным влиянием.

Такой химический фактор, как газовый состав, чрезвычайно важен для организмов, обитающих в водной среде. Например, в водах Черного моря очень много сероводорода, что делает этот бассейн не совсем благоприятным для жизни в нем некоторых животных. Впадающие в него реки несут с собой не только пестициды или тяжелые металлы, смывающиеся с полей, но также азот и фосфор. А это не только сельскохозяйственные удобрения, но и пища для морских микроорганизмов и водорослей, которые из-за переизбытка питательных веществ начинают бурно развиваться (цветение воды). Умирая, они опускаются на дно и в процессе гниения потребляют значительное количество кислорода. За последние 30-40 лет цветение Черного моря значительно усилилось. В нижнем слое воды кислород вытеснен ядовитым сероводородом, поэтому жизни здесь практически нет. Органический мир моря относительно бедный и однообразный. Жизненный слой его ограничен узкой поверхностью толщиной 150 м. Что касается наземных организмов, то они малочувствительны к газовому составу атмосферы, поскольку он постоянен.

В группу химических факторов входит и такой показатель, как соленость воды (содержание растворимых солей в природных водах). По количеству растворенных солей природные воды делятся на следующие категории: пресная вода — до 0,54 г/л, солоноватая — от 1 до 3, слабосоленая — от 3 до 10, соленая и очень соленая вода — от 10 до 50, рассол — более 50 г/л. Таким образом, в пресных водоемах суши (ручьях, реках, озерах) в 1 кг воды содержится до 1 г растворимых солей. Морская вода — сложный солевой раствор, средняя соленость которого составляет 35 г/кг воды, т.е. 3,5 %.

Живые организмы, обитающие в водной среде, приспособлены к строго определенной солености воды. Пресноводные формы не могут обитать в морях, морские не переносят опреснения. Если соленость воды изменяется, животные перемещаются в поисках благоприятной среды. Например, при опреснении поверхностных слоев моря после сильных дождей некоторые виды морских рачков опускаются на глубину до 10 м.

Личинки устриц обитают в солоноватых водах небольших заливов и эстуариев (полузамкнутые прибрежные водоемы, свободно сообщающиеся с океаном или морем). Личинки растут особенно быстро, когда соленость воды составляет 1,5-1,8 % (нечто среднее между пресной и соленой водой). При более высоком содержании солей их рост несколько подавляется. При снижении содержания солей рост подавляется уже заметно. При солености 0,25 % рост личинок прекращается, и все они гибнут.

Пирогенные факторы

К ним относятся факторы воздействия огня, или пожары. В настоящее время пожары рассматриваются как весьма значимый и один из естественных абиотических экологических факторов. При правильном использовании огонь может стать очень ценным экологическим инструментом.

На первый взгляд, пожары являются негативным фактором. Но наделе это не так. Без пожаров саванна, например, быстро исчезла бы и покрылась густым лесом. Однако этого не происходит, так как в огне гибнут нежные побеги деревьев. Поскольку деревья растут медленно, немногим из них удается выдержать пожары и вырасти достаточно высоко. Трава же растет быстро и так же быстро восстанавливается после пожаров.

Следует отмстить, что в отличие от других экологических факторов человек может регулировать пожары, в связи с чем они могут стать определенным ограничивающим фактором при распространении растений и животных. Контролируемые людьми пожары способствуют образованию богатой, полезной веществами золы. Смешиваясь с почвой, зола стимулирует рост растений, от количества которых зависит жизнь животных.

Кроме того, многие обитатели саванн, например африканский аист и птица-секретарь, используют пожары в своих целях. Они посещают границы естественных или контролируемых пожаров и поедают там насекомых и грызунов, которые спасаются от огня.

Возникновению пожаров могут способствовать как естественные факторы (удар молнии), так и случайные и неслучайные действия человека. Различают два типа пожаров. Наиболее трудно поддаются сдерживанию и регулированию верховые пожары. Чаще всего они весьма интенсивные и разрушают всю растительность и органику почвы. Такие пожары оказывают ограничивающее воздействие на многие организмы.

Низовые пожары , наоборот, обладают избирательным действием: для одних организмов они более губительны, для других — менее и, таким образом, способствуют развитию организмов с высокой устойчивостью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая отмершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений. В местообитаниях с малоплодородной почвой пожары способствуют обогащению ее зольными элементами и питательными веществами.

При достаточной влажности (прерии Северной Америки) пожары стимулируют рост трав за счет деревьев. Особенно важную регулирующую роль пожары играют в степях и саваннах. Здесь периодические пожары снижают вероятность вторжения пустынных кустарников.

Человек нередко является причиной увеличения частоты диких пожаров, хотя частное лицо не имеет права намеренно (даже случайно) вызывать пожар в природе. Вместе с тем использование огня специалистами — часть правильного землепользования.

АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

РЕФЕРАТ

Выполнила: ст-ка гр. БС-12

Манджиева А.Л.

Проверил: доц., к.т.н. Неваленный

Астрахань 2009


Введение

I. Абиотические факторы

II. Биотические факторы

Введение

Среда - это совокупность элементов, которые способны оказывать прямое или косвенное воздействие на организмы. Элементы окружающей среды, оказывающие влияние на живые организмы» называются экологическими факторами. Они подразделяются на абиотические, биотические и антропогенные.

К числу абиотических факторов относятся элементы неживой природы: свет, температура, влажность, осадки, ветер, атмосферное давление, радиационный фон, химический состав атмосферы, воды, почвы и т. п. Биотическими факторами являются живые организмы (бактерии, грибы, растения, животные), вступающие во взаимодействие с данным организмом. К антропогенным факторам относятся особенности среды, обусловленные трудовой деятельностью человека. По мере роста народонаселения и технической вооруженности человечества удельный вес антропогенных факторов постоянно возрастает.

Следует учитывать, что на отдельные организмы и их популяции одновременно воздействуют многие факторы, создающие определенный комплекс условий, в котором могут обитать те или иные организмы. Одни факторы могут усиливать или ослаблять действие других факторов. Например, при оптимальной температуре повышается выносливость организмов к недостатку влаги и пищи; в свою очередь обилие пищи увеличивает устойчивость организмов к неблагоприятным климатическим условиям.

Рис. 1. Схема действия экологического фактора

Степень влияния факторов окружающей природы зависит от силы их действия (рис. 1). При оптимальной силе воздействия данный вид нормально живет, размножается и развивается (экологический оптимум, создающий наилучшие условия жизни). При значительных отклонениях от оптимума, как в сторону повышения, так и в сторону понижения жизнедеятельность организмов угнетается. Максимальное и минимальное значения фактора, при которых еще возможна жизнедеятельность, называются пределами выносливости (границами терпимости).

Оптимальное значение фактора, как и пределы выносливости, неодинаково для разных видов и даже для отдельных особей одного и того же вида. Одни виды могут переносить значительные отклонения от оптимального значения фактора, т.е. обладают широким диапазоном выносливости, другие - узким. Например, сосна растет и на песках, и на болотах, где стоит вода, а кувшинка сразу гибнет без воды. Приспособительные реакции организма на влияние среды вырабатываются в процессе естественного отбора и обеспечивают выживание видов.

Значение факторов внешней среды неравноценно. Например, зеленые растения не могут существовать без света, диоксида углерода и минеральных солей. Животные не могут обходиться без пищи и кислорода. Жизненно важные факторы называются лимитирующими (при отсутствии их жизнь невозможна). Ограничивающее действие лимитирующего фактора проявляется и при оптимуме остальных факторов. Другие факторы могут оказывать менее выраженное влияние на живые существа, например содержание азота в атмосфере для растительных и животных организмов.

Сочетание условий среды, обеспечивающих усиленный рост, развитие и размножение каждого организма (популяции, вида), называют биологическим оптимумом. Создание условий биологического оптимума при выращивании сельскохозяйственных культур и животных позволяет значительно повысить их продуктивность.

I. Абиотические факторы

К числу абиотических факторов относят климатические условия, которые в различных частях земного шара тесно связаны с деятельностью Солнца.

Солнечный свет является основным источником энергии, которая используется для всех жизненных процессов на Земле. Благодаря энергии солнечных лучей в зеленых растениях происходит фотосинтез, в результате которого обеспечивается питание всех гетеротрофных организмов.

Солнечное излучение неоднородно по своему составу. В нем различают инфракрасные (длина волны более 0,75 мкм), видимые (0,40,- 0,75 мкм) и ультрафиолетовые (менее 0,40 мкм) лучи. Инфракрасные лучи составляют около 45 % лучистой энергии, достигающей Земли, и являются главным источником тепла, поддерживающего температуру окружающей среды. Видимые лучи составляют около 50 % лучистой энергии, которая особенно необходима растениям для процесса фотосинтеза, а также для обеспечения видимости и ориентации в пространстве всех живых существ. Хлорофилл поглощает преимущественно оранжево-красные (0,6-0,7 мкм) и сине-фиолетовые (0,5 мкм) лучи. Растения используют на фотосинтез менее 1 % солнечной энергии; остальная ее часть рассеивается в виде тепла или отражается.

Большая часть ультрафиолетового излучения с длиной волны менее 0,29 мкм задерживается своеобразным «экраном» - озоновым слоем атмосферы, который образуется под воздействием этих же лучей. Это излучение является губительным для живого. Ультрафиолетовые лучи с большей длиной волны (0,3-0,4 мкм) достигают поверхности Земли и в умеренных дозах оказывают благоприятное воздействие на животных - стимулируют синтез витамина В, пигментов кожи (загар) и др.

Большинство животных способны воспринимать световые раздражения. Уже у простейших начинают появляться светочувствительные органоиды («глазок» у эвглены зеленой), с помощью которых они способны реагировать на световое воздействие (фототаксисы). Почти все многоклеточные имеют разнообразные светочувствительные органы.

По требовательности к интенсивности освещения различают светолюбивые, теневыносливые и тенелюбивые растения.

Светолюбивые растения могут нормально развиваться только при интенсивном освещении. Они широко распространены в сухих степях и полупустынях, где растительный покров редкий и растения не затеняют друг друга (тюльпан, гусиный лук). К светолюбивым растениям относятся и хлебные злаки, растения безлесных склонов (чабрец, шалфей) и др.

Теневыносливые растения лучше растут при прямом освещении солнечными лучами, однако способны выносить и затенение. Это в основном лесообразующие породы (береза, осина, сосна, дуб, ель) и травянистые растения (зверобой, земляника) и др.

Тенелюбивые растения не выносят прямого солнечного излучения и нормально развиваются в условиях затенения. К таким растениям относятся лесные травы - кислица, мхи и др. При вырубке леса некоторые из них могут погибать.

Ритмические изменения активности светового потока, связанные с вращением Земли вокруг своей оси и вокруг Солнца, заметно отражаются на живой природе. Продолжительность светового дня неодинакова в различных частях земного шара. На экваторе она постоянна на протяжении всего года и равна 12 ч. По мере передвижения от экватора к полюсам длительность светового дня изменяется. В начале лета световой день достигает максимальной длины, затем постепенно уменьшается, в конце декабря становится самым коротким и снова начинает увеличиваться.

Реакция организмов на продолжительность светового дня, выражающаяся в изменении интенсивности физиологические процессов, называется фотопериодизмом. С фотопериодизмом связаны основные приспособительные реакции и сезонные изменения у всех живых организмов. Совпадение периодов жизненного цикла с соответствующим временем года (сезонный ритм) имеет огромное значение для существования видов. Роль пускового механизма сезонных изменений (от весейнего пробуждения до зимнего покоя) играет длина светового дня, как наиболее постоянное изменение, предвещающее смену температур и других экологических условий. Так, увеличение длины светового дня стимулирует дея­тельность половых желез у многих животных и определяет начало брачного периода. Укорочение светового дня ведет к затуханию функции половых желез, накоплению жира, развитию пышного меха у животных, перелетам птиц. Аналогично у растений с удлинением светового дня связано образование гормонов, влияющих на цветение, оплодотворение, плодоношение, образование клубней и т. д. Осенью эти процессы затухают.

В зависимости от реакции на длину светового дня растения делят на длиннодневные, цветение которых наступает при продолжительности светлого периода суток 12 и более часов (рожь, овес, ячмень, картофель и др.), короткодневные, у которых цветение наступает, когда день становится коротким (менее 12 ч) (это растения преимущественно тропического происхождения - кукуруза, соя, ифосо, георгины и др.) и нейтральные, цветение которых не зависит от длины светового дня (горох, гречиха и др.).

На основе фотопериодизма у растений и животных в процессе эволюции выработались специфические изменения интенсивности физиологических процессов, периодов роста и размножения, повторяющиеся с годичной периодичностью, которые называются сезонными ритмами. Изучив закономерности суточных ритмов, связанных со сменой дня и ночи, и сезонных ритмов, человек использует эти знания для круглогодичного выращивания в искусственных условиях овощей, цветов, птиц, повышения яйценоскости кур и т. п.

Суточная ритмичность у растений проявляется в периодическом открытии и закрытии цветков (хлопчатник, лен, душистый табак), усилении или ослаблении физиологических и биохимических процессов фотосинтеза, скорости деления клеток и др. Суточные ритмы, проявляющиеся в периодическом чередовании активности и отдыха, характерны для животных и человека. Всех животных можно подразделить на дневных и ночных. Большинство из них проявляют наибольшую активность днем и лишь немногие (летучие мыши, совы, крыланы и др.) приспособились к жизни только в ночных условиях. Ряд животных постоянно обитают в полной темноте (аскарида, крот и др.).

Абиотические факторы. Температура

Абиотические факторы — все компоненты и явления неживой природы.

Температура относится к климатическим абиотическим факторам среды. Большинство организмов приспособлены к довольно узкому диапазону температур, так как активность клеточных ферментов лежит в пределах от 10 до 40 °С, при низких температурах реакции идут замедленно.

Различают животные организмы:

  • с постоянной температурой тела (теплокровные , или гомойотермные );
  • с непостоянной температурой тела (холоднокровные , или пойкилотермные ).

У растений и животных существуют специальные приспос обления, позволяющие адаптироваться к колебаниям температуры.

Организмы, температура тела которых меняется в зависимости от температуры окружающей среды (растения, беспозвоночные животные, рыбы, земноводные и пресмыкающиеся), имеют различные приспособления для поддержания жизнедеятельности. Такие животные называются холоднокровными , или пойкилотермными . Отсутствие механизма терморегуляции обусловлено слабым развитием нервной системы, низким уровнем обмена веществ и отсутствием замкнутой системы кровообращения.

Температура тела пойкилотермных животных всего на 1—2 °С выше температуры среды или равна ей, однако она может увеличиваться в результате поглощения солнечного тепла (змеи, ящерицы) или мышечной работы (летающие насекомые, быстро плавающие рыбы). Резкие колебания температуры среды могут привести к гибели.

С наступлением зимы растения и животные погружаются в состояние зимнего покоя. Интенсивность обмена веществ у них резко падает. При подготовке к зиме в тканях животных запасается много жира, углеводов, количество воды в клетчатке уменьшается, накапливаются сахара, глицерин, препятствующий замерзанию.

Виды с непостоянной температурой тела при понижении температуры способны переходить в неактивное состояние. Замедление обмена веществ в клетках сильно увеличивает устойчивость организмов к неблагоприятным погодным условиям. Переход животных в состояние оцепенения, как и переход растений в состояние покоя, позволяет им переносить зимние холода с наименьшими потерями, не тратя много энергии.

Для защиты организмов от перегрева в жаркое время года включаются специальные физиологические механизмы: у растений усиливается испарение влаги через устьица, у животных усиливается испарение воды через дыхательную систему и кожу.

У пойкилотермных организмов внутренняя температура тела следует за изменениями температуры среды. Скорость обмена веществ у них то возрастает, то понижается. Таких видов - большинство на Земле.

Организмы с постоянной температурой тела называются теплокровными , или гомойотермными . К ним относятся птицы и млекопитающие.

Температура тела таких животных устойчива, она не зависит от температуры среды, благодаря наличию механизмов терморегуляции. Постоянство температуры тела обеспечивается регуляцией теплопродукции и теплоотдачи.

При угрозе перегревания организма происходит расширение кожных сосудов, увеличиваются потоотделение и теплоотдача. При угрозе охлаждения кожные сосуды сужаются, шерсть или перья поднимаются — теплоотдача ограничивается.

При значительных перепадах внешней температуры и резких изменениях теплопродукции температура внутренних органов у теплокровных животных может отклоняться от обычных значений от 0,2—0,3 до 1—3 °С.

Потоотделение свойственно только человеку, обезьянам и непарнокопытным. У других гомойотермных животных наиболее эффективный механизм теплоотдачи — тепловая одышка. Способность к повышению теплопродукции наиболее выражена у птиц, грызунов и некоторых других животных.

Гомойотермные способны поддерживать постоянную температуру тела при любых условиях среды. Их обмен веществ всегда идет с высокой скоростью, даже если наружная температура постоянно меняется. Например, белые медведи в Арктике или пингвины в Антарктиде выдерживают 50-градусные морозы, что составляет разницу в 87-90° по сравнению с их собственной температурой.

Приспособления организмов к разным температурным режимам. Как теплокровные, так и холоднокровные животные в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главный источник поступления тепловой энергии у организмов с непостоянной температурой тела — внешнее тепло.

Перезимовавшим змеям требуется две-три недели, чтобы довести обмен веществ до достаточной интенсивности. Обычно змеи выползают и греются на солнце неоднократно в течение всего дня, а на ночь возвращаются в норы.

С наступлением зимы растения и животные с непостоянной температурой тела впадают в состояние зимнего покоя. Интенсивность обмена веществ у них резко снижается. При подготовке к зиме в тканях запасается много жиров и углеводов.

Осенью растения сокращают расход веществ, запасая сахара и крахмал. Их рост прекращается, резко замедляется интенсивность всех физиологических процессов, опадают листья. В первые морозы растения теряют значительное количество воды, становясь устойчивыми к морозу и переходя в состояние глубокого покоя.

В жаркое время года включаются механизмы защиты от перегрева. У растений усиливается испарение воды через устьица, а у животных — через дыхательную систему и кожные покровы.

Если растения достаточно обеспечены водой, устьица открыты днём и ночью. Однако у многих растений устьица открыты только днём на свету, а ночью закрываются. В сухую жаркую погоду устьица растений закрываются даже днём, и выделение водяного пара из листьев в воздух прекращается. Когда наступают благоприятные условия, устьица раскрываются и нормальная жизнедеятельность растений восстанавливается.

Наиболее совершенная терморегуляция наблюдается у животных с постоянной температурой тела. Регуляция теплоотдачи кожными сосудами, хорошо развитая высшая нервная деятельность позволили птицам и млекопитающим сохранять активность при резких перепадах температур и освоить практически все места обитания.

Полное разделение крови на венозную и артериальную, интенсивный обмен веществ, перьевой или волосяной покров тела, способствующий сохранению тепла.

Большое значение для теплокровных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнёзд.

К абиотическим факторам относятся факторы космические (солнечная радиация)климатические (свет, температура, влажность, атмосферное давление, осадки, движение воздуха),эдафические или почвенные факторы (механический состав почвы, влагоемкость, воздухопроницаемость, плотность почвы),орографические факторы (рельеф, высота над уровнем моря, экспозиция склона),химические факторы (газовый состав воздуха, солевойсостави кислотность воды и почвенных растворов). Абиотические факторы воздействуют на живые организмы (прямо или косвенно) через те или иные стороны обмена веществ. Их особенностью является односторонность воздействия: организм может к ним приспособиться, но не оказывает на них существенного влияния.

I . Космические факторы

Биосфера, как среда обитания живых организмов, не изолирована от сложных процессов, протекающих в космическом пространстве, причем связанных непосредственно не только с Солнцем. На Землю попадает космическая пыль, метеоритное вещество. Земля периодически сталкивается с астероидами, сближается с кометами. Через Галактику проходят вещества и волны, возникающие в результате вспышек сверхновых звезд. Разумеется, наша планета наиболее тесно связана с процессами, происходящими на Солнце, – с так называемой солнечной активностью. Суть этого явления состоит в превращении энергии, накапливающейся в магнитных полях Солнца, в энергию движения газовых масс, быстрых частиц, коротковолнового электромагнитного излучения.

Наиболее интенсивные процессы наблюдаются в центрах активности, называемых активными областями, в которых наблюдается усиление магнитного поля, возникают области повышенной яркости, а также так называемые солнечные пятна. В активных областях могут происходить взрывоподобные выделения энергии, сопровождающиеся выбросами плазмы, внезапным появлением солнечных космических лучей, усилением коротковолнового и радиоизлучения. Известно, что изменения уровня вспышечной активности имеют циклический характер с обычным циклом, равным 22 годам, хотя известны колебания периодичностью от 4,3 до 1850 лет. Солнечная активность влияет на ряд жизненных процессов на Земле – от возникновения эпидемий и всплесков рождаемости до крупных климатических преобразований. Это было показано еще в 1915 г. русским ученым А. Л. Чижевским, основателем новой науки – гелиобиологии (от греч. хелиос - Солнце), рассматривающей воздействие изменений активности Солнца на биосферу Земли.

Таким образом, к числу важнейших космических факторов относится связанное с солнечной активностью электромагнитное излучение с широким диапазоном длин волн. Поглощение атмосферой Земли коротковолнового излучения приводит к образованию защитных оболочек, в частности озоносферы. Из других космических факторов следует назвать корпускулярное излучение Солнца.

Солнечная корона (верхняя часть солнечной атмосферы), состоящая в основном из ионизированных атомов водорода - протонов - с примесью гелия, непрерывно расширяется. Покидая корону, этот поток водородной плазмы распространяется в радиальном направлении и достигает Земли. Его и называют солнечным ветром. Он заполняет всю область солнечной системы; и постоянно обтекает Землю, взаимодействуя с ее магнитным полем. Понятно, что это связано с динамикой магнитной активности (например, магнитные бури) и непосредственно сказывается на жизни на Земле.

Изменения ионосферы в полярных областях Земли также связаны с солнечными космическими лучами, которые вызывают ионизацию. При мощных вспышках солнечной активности воздействие солнечных космических лучей может кратковременно превышать обычный фон галактических космических лучей. В настоящее время наукой накоплено много фактических материалов, иллюстрирующих влияние космических факторов на биосферные процессы. Доказана, в частности, чувствительность беспозвоночных животных к изменениям солнечной активности, установлена корреляция ее вариаций с динамикой нервной и сердечно-сосудистой систем человека, а также с динамикой заболеваний – наследственных, онкологических, инфекционных и др.

Особенности воздействия на биосферу со стороны космических факторов и проявлений солнечной активности состоят в том, что поверхность нашей планеты отделена от Космоса мощным слоем вещества в газообразном состоянии, т. е. атмосферой.

II . Климатические факторы

Важнейшая климатоформирующая функция принадлежит атмосфере как среде, воспринимающей космические и связанные с Солнцем факторы.

1. Свет. Энергия солнечного излучения распространяется в пространстве в виде электромагнитных волн. Около 99 % ее составляют лучи с длиной волны 170-4000 нм, в том числе 48 % приходится на видимую часть спектра с длиной волны 400-760 нм, а 45 % - на инфракрасную (длина волны от 750 нм до 10" 3 м), около 7 % - на ультрафиолетовую (длина волны менее 400 нм). В процессах фотосинтеза наиболее важную роль играет фотосинтетически активная радиация (380-710 нм).

Количество энергии солнечного излучения, поступающе­го к Земле (к верхней границе атмосферы), практически постоянно и оценивается значением 1370 Вт/м2. Эта величина называется солнечной постоянной.

Проходя через атмосферу, солнечное излучение рассеивается на молекулах газов, на взвешенных примесях (твердых и жидких), поглощается водяными парами, озоном, диоксидом углерода, пылевидными частицами. Рассеянное солнечное излучение частично доходит до земной поверхности. Его видимая часть создает свет днем при отсутствии прямых солнечных лучей, например при сильной облачности.

Энергия солнечного излучения не только поглощается поверхностью Земли, но и отражается ею в виде потока длинноволнового излучения. Более светло окрашенные поверхности отражают свет более интенсивно, чем темные. Так, чистый снег отражает 80-95 %, загрязненный - 40-50, черноземная почва - 5-14, светлый песок - 35-45, полог ле­са - 10-18%. Отношение отражаемого поверхностью потока солнечного излучения к поступившему называется альбедо.

С лучистой энергией Солнца связана освещенность земной поверхности, определяющаяся продолжительностью и интенсивностью светового потока. У растений и животных в процессе эволюции выработались глубокие физиологические, морфологические и поведенческие адаптации к динамике освещенности. У всех животных, включая человека, существуют так называемые циркадные (суточные) ритмы активности.

Требования организмов к определенной продолжительности темного, и светлого времени носят название фотопериодизма, причем особенно важное значение имеют сезонные колебания освещенности. Прогрессивная тенденция к уменьшению продолжительности светового дня от лета к осени служит информацией для подготовки к зимовке или спячке. Поскольку фотопериодические условия зависят от широты, у ряда видов (в первую очередь у насекомых) могут образовываться географические расы, различающиеся по пороговой продолжительности дня.

2. Температура

Температурная стратификация – это изменение температуры воды по глубине водного, объекта. Непрерывное, изменение температуры характерно для любых экологических систем. Часто для обозначения такого изменения используют слово "градиент". Однако температурная стратификация воды в водоеме – специфическое явление. Так, в летний период поверхностные воды нагреваются сильнее, чем глубинные. Поскольку более теплая вода имеет меньшую плотность и меньшую вязкость, то ее циркуляция происходит в поверхностном, нагретом слое и с более плотной и более вязкой холодной водой она не смешивается. Между теплым и холодным слоем образуется промежуточная зона с резким градиентом температуры, которую называют термоклиной. Общий температурный режим, связанный с периодиче­скими (годовыми, сезонными, суточными) изменениями тем­пературы, также является важнейшим условием обитания живых организмов в воде.

3. Влажность. Влажность воздуха – это содержание в воздухе водяного пара. Наиболее богаты влагой нижние слои атмосферы (до высоты 1,5-2,0 км), где концентрируется примерно 50 % всей атмосферной влаги. Содержание водяного пара в воздухе зависит от температуры последнего.

4. Атмосферные осадки – это вода в жидком (капли) или твердом состоянии, выпадающая на земную поверхность из облаков или осаждающаяся непосредственно из воздуха вследствие сгущения водяного пара. Из облаков могут выпадать дождь, снег, морось, ледяной дождь, снежные зерна, ледяная крупа, град. Количество выпавших осадков измеряется толщиной слоя выпавшей воды в миллиметрах.

Осадки тесно связаны с влажностью воздуха и представляют собой результат конденсации водяных паров. Вследствие конденсации в приземном слое воздуха образуются росы, туманы, а при низких температурах наблюдается кристаллизация влаги. Конденсация и кристаллизация паров воды в более высоких слоях атмосферы образуют облака различной структуры и являются причиной атмосферных осадков. Выделяют влажные (гумидные) и сухие (аридные) зоны земного шара. Максимальное количество осадков выпадает в зоне тропических лесов (до 2000 мм/год), в то время как в аридных зонах (например, в пустынях) – 0,18 мм/год.

Атмосферные осадки – важнейший фактор, оказывающий влияние на процессы загрязнения природной среды. Присутствие водяных паров (тумана) в воздухе при одновременном поступлении в него, например, диоксида серы приводит к тому, что последний превращается в сернистую кислоту, которая окисляется до серной. В условиях застоя воздуха (штиль) образуется устойчивый токсичный туман. Подобные вещества могут вымываться из атмосферы и выпадать на поверхность суши и океана. Типичным результатом являются так называемые кислотные дожди. Твердые примеси в атмосфере могут служить ядрами конденсации влаги, вызывая разные формы осадков.

5. Атмосферное давление. Нормальным давлением принято считать 101,3 кПа (760 мм рт. ст.). В пределах поверхности земного шара существуют области высокого и низкого давления, причем наблюдаются сезонные и суточные минимумы и максимумы давления в одних и тех же точках. Различаются также морской и континентальный типы динамики атмосферного давления. Периодически возникающие области низ­кого давления носят название циклонов и характеризуются мощными потоками воздуха, движущегося по спирали и перемещающегося в пространстве к центру. Циклоны связаны с неустойчивой погодой и большим количеством осадков.

В противоположность им, антициклоны характеризуются устойчивой погодой, низкими скоростями ветра, в ряде случаев температурными инверсиями. При антициклонах могут возникать неблагоприятные с точки зрения переноса и рассеивания примесей метеорологические условия.

6. Движение воздуха. Причиной образования ветровых потоков и перемещения воздушных масс является неравномерный нагрев разных участков земной поверхности, связанный с перепадами давления. Ветровой поток направлен в сторону меньшего давления, но и вращение Земли также влияет на циркуляцию воздушных масс в глобальном масштабе. В приземном слое воздуха движение воздушных масс оказывает влияние на все метеорологические факторы окружающей среды, т.е. на климат, включая режимы температуры, влажности, испарения с поверхности суши и моря, а также транспирацию растений.

Особенно важно знать, что ветровые потоки – важнейший фактор переноса, рассеивания и выпадения загрязняющих веществ, поступающих в атмосферу от промышленных предприятий, теплоэнергетики, транспорта. Сила и направление ветра определяют режимы загрязненности окружающей среды. Например, штиль в сочетании с инверсией температуры воздуха рассматривается как неблагоприятные метеорологические условия (НМУ), способствующие длительному сильному загрязнению воздуха в районах промышленных предприятий и проживания людей.

Общие закономерности распределения уровней и региональных режимов экологических факторов

Географическая оболочка Земли (как и биосфера) неоднородна в пространстве, она дифференцирована на отличающиеся друг от друга территории. Ее последовательно делят на физико-географические пояса, географические зоны, внутризональные горные и равнинные области и подобласти, подзоны и т. д.

Физико-географический пояс – это крупнейшая таксономическая единица географической оболочки, слагающаяся из ряда географических зон, близких по тепловому балансу и режиму увлажнения.

Выделяют, в частности, арктический и антарктический, субарктический и субантарктический, северные и южные умеренные и субтропические, субэкваториальный и экваториальный пояса.

Географическая (она же природная, ландшафтная) зона это значительная часть физико-географического пояса с особым характером геоморфологических процессов, с особыми типами климата, растительности, почв, животного и растительного мира.

Зоны имеют преимущественно (хотя далеко не всегда) вытянутые в широком плане очертания и характеризуются сходными природными условиями, определенной последовательностью в зависимости от широтного положения – это широтная географическая зональность, обусловленная главным образом характером распределения солнечной энергии по широтам, т. е. с уменьшением ее прихода от экватора к полюсам и неравномерностью увлажнения.

Наряду с широтной существует также типичная для горных районов вертикальная (или высотная) зональность, т. е. смена растительности, животного мира, почв, климатических условий, по мере подъема от уровня моря, связанная в основном с изменением теплового баланса: перепад температуры воздуха составляет 0,6-1,0 °С на каждые 100 м высоты.

III . Эдафические или почвенные факторы

Согласно определению В. Р. Вильямса, почва – рыхлый поверхностный горизонт суши, способный производить урожай растений. Важнейшим свойством почвы является ее плодородие, т.е. способность обеспечивать органическое и минеральное питание растений. Плодородие зависит от физических и химических свойств почвы, которые в совокупности представляют собой эдафогенные (от греч. эдафос - почва), или эдафические, факторы.

1. Механический состав почвы . Почва – продукт физического, химического и биологического преобразования (выветривания) горных пород, является трехфазной средой, содержащей твердые; жидкие и газообразные компоненты. Она формируется в результате сложных взаимодействий климата, растений, животных, микроорганизмов и рассматривается как биокосное тело, содержащее живые и неживые компоненты.

В мире существует множество типов почв, связанных с различными климатическими условиями и спецификой процессов их образования. Почвы характеризуются определенной поясностью, хотя пояса далеко не всегда имеют сплошной характер. Среди главнейших типов почв России можно назвать тундровые, подзолистые почвы таежно-лесной зоны (самые распространенные), черноземы, серые лесные почвы, каштановые почвы (к югу и востоку от черноземных), бурые почвы (характерны для сухих степей и полупустынь), красноземы, солончаки и др.

В результате перемещения и превращения веществ почва обычно расчленяется на отдельные слои, или горизонты, сочетание которых на разрезе образует профиль почвы (рис. 2), который в общем виде выглядит следующим образом:

    самый верхний горизонт 1 ), содержащий продукты перегнивания органики, является наиболее плодородным. Он называется гумусовым или перегнойным, имеет зернисто-комковатую или слоистую структуру. Именно в нем происходят сложные физико-химические процессы, в результате которых образуются элементы питания растений. Гумус имеет разную окраску.

    Над гумусовым горизонтом располагается слой растительного опада, который принято называть подстилкой (А 0 ,). Он состоит из еще не разложившихся растительных остатков.

    Ниже гумусового горизонта расположен малоплодородный белесый слой толщиной 10-12 см (А 2). Питательные вещества вымыты из него водой или кислотами. Поэтому его называют горизонтом вымывания или выщелачивания (элювиальным). Собственно он и является подзолистым горизонтом. Слабо растворяются и остаются в этом горизонте кварц и оксид алюминия.

    Еще ниже залегает материн­ская порода (С).

Температура. К абиотическим факторам среды относятся влажность, свет, лучистая энергия, воздух и его состав и другие неживые природные компоненты. Температура - экологический фактор.

По температуре тела все живые организмы делятся на пойкило- термные (с изменяющейся температурой тела в зависимости от температуры среды) и гомойотермные (организмы с постоянной температурой тела).

К пойкилотермной группе относятся растения, бактерии, вирусы, грибы, простейшие, рыбы, членистоногие и др.

К гомойотермной группе относятся птицы, млекопитающие и человек. Эти организмы регулируют температуру тела независимо от температуры окружающей среды.

По выносливости к низким температурам растения делятся на теплолюбивые и холодоустойчивые. К теплолюбивым относятся виноград, персик, урюк, груша и др., а к холодоустойчивым - мхи, лишайники, сосна, ель, пихта.

Для каждого отдельного организма существует температурный предел. Некоторые организмы устойчивы к колебаниям температуры. Например, рыбы живут при температуре -52°С, бактерии - при -80°С. Некоторые синезеленые водоросли выдерживают -44°С.

Отклонения температуры от постоянного уровня вызывают замедление обмена веществ и разрушение биохимических реакций в белке и постепенно приводят к кристаллизации клеток и полной остановке жизни.

У растений сформировались различные приспособления к колебаниям температуры среды:

1. Осенью уменьшается количество воды в клеточной цитоплазме растений, ее органоиды (глицерин, моносахариды и др.) сгущаются, тем самым приспосабливаются к низкой температуре и переходят в состояние покоя.

2.Зимой у растений наступает стадия покоя в виде споры, семян, клубня, луковицы, корня, корневищ. А крупные деревья сбрасывают листья, сгущается клеточный сок. Благодаря этому они способны переживать суровые условия зимовки.

3. Пойкилотермные животные при неблагоприятных условиях впадают в зимнюю спячку (состояние анабиоза). Анабиоз - это временное замедление обмена веществ и энергии, когда почти полностью отсутствуют все видимые проявления жизни. Зимняя спячка у некоторых организмов (медведи) связана с недостатком пищи.

Гомойотермные животные защищаются от низких температур различными способами:

1. Перемещение животных из холодных районов в теплые (птицы, некоторые млекопитающие).

2. Запасание большого количества жира и утолщение шерстяного покрова (волк, лиса, хищники, птицы, тюлени, кабаны и т. д.).

3. Впадают в зимнюю спячку (сурок, барсук, медведь, грызуны).

Влажность. Влажность также воздействует на организмы как

экологический фактор, чаще всего зависит от климата, температуры и природных зон. Иногда влажность выполняет роль лимитирующего фактора. Недостаток влаги влияет на урожай растений. Особенно недостаток влаги наблюдается в пустынных зонах, а в лесу и болотах, наоборот, ее избыток. В зависимости от влажности действует зональная закономерность на Земле.

Флора и фауна изменяются соответственно рельефу по географическим зонам: тундра, лесотундра, тайга, лесостепь, тропики, экватор. Классификация зон зависит от температуры и влажности.

Среди растений можно выделить экологические группы:

1. Ксерофиты (греч. xerox - "сухой", phytos - "расстояние") - растения засушливых местообитаний (пустыня, полупустыня, степь). Ксерофиты приспособлены к видоизменениям листьев, стеблей (саксаул, жузгун, полынь, хвойник, терескен, ковыль, солянка).

2. Суккуленты (лат. succulentus -"сочный") - форма светолюбивых ксерофитов. Листья, стебли утолщены и видоизменены в колючки.

3. Мезофиты (греч. mesos - "промежуточный") - растут в относительно влажных районах. Листья крупные (береза, груша, луговые травы).

4. Гигрофиты (греч. hygros - "влажный") - растения, растущие в условиях избыточной влажности. Это тростник, рис, кувшинка.

5. Гидрофиты (греч. hudor - "вода") - водные растения, погруженные в воду. К ним относятся элодея, водоросли.

Влажность также играет важную роль в жизни животных. Их разделяют на наземные, водные и земноводные. В свою очередь, наземные животные делятся на лесные, степные, пустынные.

Водные животные - это рыбы, водные млекопитающие (киты, дельфины), членистоногие, губки, моллюски, черви.

Наземные животные-млекопитающие, птицы, пресмыкающиеся, насекомые.

Земноводные - лягушки, морские черепахи и др. В связи с потеплением климата на Земле в последнее время наблюдаются факты повышения средней температуры. Повышение температуры может привести к снижению влажности в природных зонах и превращению экосистем в пустыни. Особенно это заметно в засушливых районах Средней Азии, Казахстана, Малой Азии, Африки, где возможно увеличение объема антропогенных ландшафтов.

Безусловно, это приведет к значительному социально-экономическому ущербу названных стран.

1. Среди абиотических факторов температура и влажность играют основную роль.

2. Соответственно сформированы экологические группы растений и животных.

3. Большое влияние на формирование географических зон на Земле оказывают влажность и температура.

1. Необходима ли температура для живых организмов?

2. На какие экологические группы делятся животные в зависимости от температуры тела? Приведите примеры.

3. Назовите экологические группы растений и приведите примеры.

4. Как классифицируются растения по влажности?

1. Назовите растения засушливых мест и объясните их морфологические особенности.

2. Верблюд может выдержать без воды 40 дней. Чем это объясняется?

Как регулируется питание организмов в состоянии анабиоза?

Как меняется дыхание организмов в зависимости от влажности?

Назовите экологические группы, зависящие от биотических факторов и взаимосвязей организмов.