Когда можно применять теорему виета. Решение неполных квадратных уравнений. Общий алгоритм решения по теореме Виета

Перед тем как перейти к теореме Виета, введем определение. Квадратное уравнение вида x ² + px + q = 0 называется приведенным. В этом уравнении старший коэффициент равен единице. Например, уравнение x ² — 3x — 4 = 0 является приведенным. Всякое квадратное уравнение вида ax ² + bx + c = 0 можно сделать приведенным, для этого делим обе части уравнения на а ≠ 0. Например, уравнение 4x ² + 4x — 3 = 0 делением на 4 приводится к виду: x ² + x — 3/4 = 0. Выведем формулу корней приведенного квадратного уравнения, для этого воспользуемся формулой корней квадратного уравнения общего вида: ax ² + bx + c = 0

Приведенное уравнение x ² + px + q = 0 совпадает с уравнением общего вида, в котором а = 1, b = p , c = q. Поэтому для приведенного квадратного уравнения формула принимает вид:

последнее выражение называют формулой корней приведенного квадратного уравнения, особенно удобно пользоваться этой формулой когда р четное число. Для примера решим уравнение x ² — 14x — 15 = 0

В ответ запишем уравнение имеет два корня.

Для приведенного квадратного уравнения с положительным справедлива следующая теорема.

Теорема Виета

Если x 1 и x 2 — корни уравнения x ² + px + q = 0, то справедливы формулы:

x 1 + x 2 = — р

x 1 * x 2 = q, то есть сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Исходя из формулы корней приведенного квадратного уравнения имеем:

Складывая эти равенства, получаем: x 1 + x 2 = —р.

Перемножая эти равенства, по формуле разности квадратов получаем:


Отметим, что теорема Виета справедлива и тогда, когда дискриминант равен нулю, если считать, что в этом случае квадратное уравнение имеет два одинаковых корня: x 1 = x 2 = — р /2.

Не решая уравнения x ² — 13x + 30 = 0 найдем сумму и произведение его корней x 1 и x 2 . этого уравнения D = 169 — 120 = 49 > 0, поэтому можно применить теорему Виета: x 1 + x 2 = 13, x 1 * x 2 = 30. Рассмотрим еще несколько примеров. Один из корней уравнения x ² — рx — 12 = 0 равен x 1 = 4. Найти коэффициент р и второй корень x 2 этого уравнения. По теореме Виета x 1 * x 2 = — 12, x 1 + x 2 = — р. Так как x 1 = 4, то 4x 2 = — 12, откуда x 2 = — 3, р = — (x 1 + x 2) = — (4 — 3) = — 1. В ответ запишем, второй корень x 2 = — 3, коэффициент р = — 1.

Не решая уравнения x ² + 2x — 4 = 0 найдем сумму квадратов его корней. Пусть x 1 и x 2 — корни уравнения. По теореме Виета x 1 + x 2 = — 2, x 1 * x 2 = — 4. Так как x 1 ²+ x 2 ² = (x 1 + x 2)² — 2x 1 x 2 , тогда x 1 ²+ x 2 ² =(- 2)² -2 (- 4) = 12.

Найдем сумму и произведение корней уравнения 3x ² + 4x — 5 = 0. Данное уравнение имеет два различных корня, так как дискриминант D = 16 + 4*3*5 > 0. Для решения уравнения воспользуемся теоремой Виета. Эта теорема доказана для приведенного квадратного уравнения. Поэтому разделим данное уравнение на 3.

Следовательно, сумма корней равна -4/3, а их произведение равно -5/3.

В общем случае корни уравнения ax ² + bx + c = 0 связаны следующими равенствами: x 1 + x 2 = — b/a, x 1 * x 2 = c/a, Для получения этих формул достаточно разделить обе части данного квадратного уравнения на а ≠ 0 и применить к полученному приведенному квадратному уравнению теорему Виета. Рассмотрим пример, требуется составить приведенное квадратное уравнение, корни которого x 1 = 3, x 2 = 4. Так как x 1 = 3, x 2 = 4 — корни квадратного уравнения x ² + px + q = 0, то по теореме Виета р = — (x 1 + x 2) = — 7, q = x 1 x 2 = 12. В ответ запишем x ² — 7x + 12 = 0. При решении некоторых задач применяется следующая теорема.

Теорема, обратная теореме Виета

Если числа р , q , x 1 , x 2 таковы, что x 1 + x 2 = — р, x 1 * x 2 = q , то x 1 и x 2 — корни уравнения x ² + px + q = 0. Подставим в левую часть x ² + px + q вместо р выражение — (x 1 + x 2), а вместо q — произведение x 1 * x 2 . Получим: x ² + px + q = x ² — (x 1 + x 2) х + x 1 x 2 = x² — x 1 x — x 2 x + x 1 x 2 = (x — x 1) (x — x 2). Таким образом, если числа р , q , x 1 и x 2 связаны этими соотношениями, то при всех х выполняется равенство x ² + px + q = (x — x 1) (x — x 2), из которого следует, что x 1 и x 2 — корни уравнения x ² + px + q = 0. Используя теорему, обратную теореме Виета, иногда можно подбором найти корни квадратного уравнения. Рассмотрим пример, x ² — 5x + 6 = 0. Здесь р = — 5, q = 6. Подберем два числа x 1 и x 2 так, чтобы x 1 + x 2 = 5, x 1 * x 2 = 6. Заметив, что 6 = 2 * 3 , а 2 + 3 = 5, по теореме, обратной теореме Виета, получаем, что x 1 = 2, x 2 = 3 — корни уравнения x ² — 5x + 6 = 0.

Одним из методов решений квадратного уравнения является применение формулы ВИЕТА , которую назвали в честь ФРАНСУА ВИЕТА.

Он был известным юристом, и служил в 16 веке у французского короля. В свободное время занимался астрономией и математикой. Он установил связь между корнями и коэффициентами квадратного уравнения.

Достоинства формулы:

1 . Применив формулу, можно быстро найти решение. Потому что не нужно вводить в квадрат второй коэффициент, затем из него вычитать 4ас, находить дискриминант, подставлять его значение в формулу для нахождения корней.

2 . Без решения можно определить знаки корней, подобрать значения корней.

3 . Решив систему из двух записей, несложно найти сами корни. В приведенном квадратном уравнении сумма корней равна значению второго коэффициента со знаком минус. Произведение корней в приведенном квадратном уравнении равно значению третьего коэффициента.

4 . По данным корням записать квадратное уравнение, то есть решить обратную задачу. Например, этот способ применяют при решении задач в теоретической механике.

5 . Удобно применять формулу, когда старший коэффициент равен единице.

Недостатки:

1 . Формула не универсальна.

Теорема Виета 8 класс

Формула
Если x 1 и x 2 - корни приведенного квадратного уравнения x 2 + px + q = 0 , то:

Примеры
x 1 = -1; x 2 = 3 - корни уравнения x 2 - 2x - 3 = 0.

P = -2, q = -3.

X 1 + x 2 = -1 + 3 = 2 = -p,

X 1 x 2 = -1 3 = -3 = q.

Обратная теорема

Формула
Если числа x 1 , x 2 , p, q связаны условиями:

То x 1 и x 2 - корни уравнения x 2 + px + q = 0 .

Пример
Составим квадратное уравнение по его корням:

X 1 = 2 - ? 3 и x 2 = 2 + ? 3 .

P = x 1 + x 2 = 4; p = -4; q = x 1 x 2 = (2 - ? 3 )(2 + ? 3 ) = 4 - 3 = 1.

Искомое уравнение имеет вид: x 2 - 4x + 1 = 0.

Для начала сформулируем саму теорему: Пусть у нас есть приведённое квадратное уравнение вида x^2+b*x + c = 0. Допустим, это уравнение содержит корни x1 и x2. Тогда по теореме следующие утверждения допустимы:

1) Сумма корней x1 и x2 будет равняться отрицательному значению коэффициента b.

2) Произведение этих самых корней будет давать нам коэффициент c .

Но что же такое приведённое уравнение

Приведённым квадратным уравнением называется квадратное уравнение, коэффициент старшей степени, которой равен единицы, т.е. это уравнение вида x^2 + b*x + c = 0. (а уравнение a*x^2 + b*x + c = 0 неприведенное). Другими словами, чтобы привести уравнение к приведённому виду, мы должны разделить это уравнение на коэффициент при старшей степени (a). Задача привести данное уравнение к приведённому виду:

3*x^2 12*x + 18 = 0;

−4*x^2 + 32*x + 16 = 0;

1,5*x^2 + 7,5*x + 3 = 0; 2*x^2 + 7*x − 11 = 0.

Поделим каждое уравнение на коэффициент старшей степени, получим:

X^2 4*x + 6 = 0; X^2 8*x − 4 = 0; X^2 + 5*x + 2 = 0;

X^2 + 3,5*x − 5,5 = 0.

Как можно увидеть из примеров, даже уравнения содержащие дроби, можно привести к приведённому виду.

Использование теоремы Виета

X^2 5*x + 6 = 0 ⇒ x1 + x2 = − (−5) = 5; x1*x2 = 6;

получаем корни: x1 = 2; x2 = 3;

X^2 + 6*x + 8 = 0 ⇒ x1 + x2 = −6; x1*x2 = 8;

в результате получаем корни: x1 = -2 ; x2 = -4;

X^2 + 5*x + 4 = 0 ⇒ x1 + x2 = −5; x1*x2 = 4;

получаем корни: x1 = −1; x2 = −4.

Значение теоремы Виета

Теорема Виета позволяет нам решить любое квадратное приведённое уравнение практически за секунды. На первый взгляд это кажется достаточно сложной задачей, но после 5 10 уравнений, можно научиться видеть корни сразу.

Из приведённых примеров, и пользуясь теоремой, видно как можно значительно упростить решение квадратных уравнений, ведь используя эту теорему, можно решить квадратное уравнение практически без сложных расчётов и вычисления дискриминанта, а как известно чем меньше расчётов, тем сложнее допустить ошибку, что немаловажно.

Во всех примерах мы использовали это правило, опираясь на два важных предположения:

Приведённое уравнение, т.е. коэффициент при старшей степени равен единицы (это условие легко избежать. Можно использовать неприведенный вид уравнения, тогда будут допустимы следующие утверждения x1+x2=-b/a; x1*x2=c/a, но обычно сложнее решать:))

Когда уравнение будет иметь два различных корня. Мы предполагаем что неравенство верно и дискриминант строго больше нуля.

Поэтому, мы можем составить общий алгоритм решения по теореме Виета.

Общий алгоритм решения по теореме Виета

Приводим квадратное уравнение к приведённому виду, если уравнение дано нам в неприведённом виде. Когда коэффициенты в квадратном уравнении, которое раньше мы представили как приведённое, получились дробными(не десятичными), то в этом случае следует решать наше уравнение через дискриминант.

Также бывают случаи когда возврат к начальному уравнению позволяет нам работать с “удобными” числами.

С помощью этой математической программы вы можете решить квадратное уравнение .

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
- с помощью дискриминанта
- с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

$$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5z +1/7z^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
имеет вид
\(ax^2+bx+c=0, \)
где x - переменная, a, b и c - числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \(c \neq 0 \);
2) ax 2 +bx=0, где \(b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
\(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
\(D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)

Суть данного приема состоит в том, чтобы находить корни без помощи дискриминанта. Для уравнения вида x2 + bx + c = 0, где имеется два действительных разных корня, верно два утверждения.

Первое утверждение гласит, что сумма корней данного уравнения приравнивается значению коэффициента при переменной x (в данном случае это b), но с противоположным знаком. Наглядно это выглядит так: x1 + x2 = −b.

Второе утверждение уже связано не с суммой, а с произведением этих же двух корней. Приравнивается же это произведение к свободному коэффициенту, т.е. c. Или, x1 * x2 = c. Оба этих примера решаются в системе.

Теорема Виета значительно упрощает решение, но имеет одно ограничение. Квадратное уравнение, корни которого можно найти, используя этот прием, должно быть приведенным. В приведенном уравнении коэффициента a, тот, что стоит перед x2, равен единице. Любое уравнение можно привести к подобному виду, разделив выражение первый коэффициент, но не всегда данная операция рациональна.

Доказательство теоремы

Для начала следует вспомнить, как по традиции принято искать корни квадратного уравнения. Первый и второй корни находятся , а именно: x1 = (-b-√D)/2, x2 = (-b+√D)/2. Вообще делится на 2a, но, как уже говорилось, теорему можно применять только когда a=1.

Из теоремы Виета известно, что сумма корней равна второму коэффициенту со знаком минус. Это значит, что x1 + x2 = (-b-√D)/2 + (-b+√D)/2 = −2b/2 = −b.

То же справедливо и для произведения неизвестных корней: x1 * x2 = (-b-√D)/2 * (-b+√D)/2 = (b2-D)/4. В свою очередь D = b2-4c (опять же при a=1). Получается, что итог таков: x1 * x2 = (b2- b2)/4+c = c.

Из приведенного простого доказательства можно сделать только один вывод: теорема Виета полностью подтверждена.

Вторая формулировка и доказательство

Теорема Виета имеет и другое толкование. Если говорить точнее, то не толкование, а формулировку. Дело в том, что если соблюдаются те же условия, что и в первом случае: имеется два различных действительных корня, то теорему можно записать другой формулой.

Эта равенство выглядит следующим образом: x2 + bx + c = (x - x1)(x - x2). Если функция P(x) пересекается в двух точка x1 и x2, то ее можно записать в виде P(x) = (x - x1)(x - x2) * R(x). В случае, когда P имеет вторую степень, а именно так и выглядит первоначальное выражение, то R является простым числом, а именно 1. Это утверждение верно по той причине, что в ином случае равенство выполняться не будет. Коэффициент x2 при раскрытии скобок не должен быть больше единицы, а выражение должно оставаться квадратным.