Как решать обыкновенные дроби. Как решать примеры с дробями

Дробь - число, которое состоит из целого числа долей единицы и представляется в виде: a/b

Числитель дроби (a) - число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) - число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

2. Приведение дробей к общему знаменателю

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

3.2. Вычитание обыкновенных дробей

3.3. Умножение обыкновенных дробей

3.4. Деление обыкновенных дробей

4. Взаимно обратные числа

5. Десятичные дроби

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

6.2. Вычитание десятичных дробей

6.3. Умножение десятичных дробей

6.4. Деление десятичных дробей

#1. Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же число, не равное нулю, то получится дробь, равная данной.

3/7=3*3/7*3=9/21, то есть 3/7=9/21

a/b=a*m/b*m - так выглядит основное свойство дроби.

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Если ad=bc , то две дроби a/b =c /d считаются равными.

Например, дроби 3/5 и 9/15 будут равными, так как 3*15=5*9, то есть 45=45

Сокращение дроби - это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, 45/60=15/ ​20 =9/12=3/4 ​ (числитель и знаменатель делится на число 3, на 5 и на 15 ).

Несократимая дробь - это дробь вида 3/4 ​ , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби - сделать дробь несократимой.

2. Приведение дробей к общему знаменателю

Чтобы привести две дроби к общему знаменателю, надо:

1) разложить знаменатель каждой дроби на простые множители;

2) умножить числитель и знаменатель первой дроби на недостающие

множители из разложения второго знаменателя;

3) умножить числитель и знаменатель второй дроби на недостающие множители из первого разложения.

Примеры: приведите дроби к общему знаменателю .

Разложим знаменатели на простые множители: 18=3∙3∙2, 15=3∙5

Умножили числитель и знаменатель дроби на недостающий множитель 5 из второго разложения.

числитель и знаменатель дроби на недостающие множители 3 и 2 из первого разложения.

= , 90 – общий знаменатель дробей .

3. Арифметические действия над обыкновенными дробями

3.1. Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

a/b+c/b=(a+c)/b ​ ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

7/3+1/4=7*4/12+1*3/12=(28+3)/12=31/12

3.2. Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

a/b-c/b=(a-c)/b ​ ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

3.3. Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

a/b*c/d=a*c/b*d,

то есть перемножают отдельно числители и знаменатели.

Например:

3/5*4/8=3*4/5*8=12/40.

3.4. Деление обыкновенных дробей

Деление дробей производят следующим способом:

a/b:c/d=a*d/b*c,

то есть дробь a/b умножается на дробь, обратную данной, то есть умножается на d/c.

Пример: 7/2:1/8=7/2*8/1=56/2=28

4. Взаимно обратные числа

Если a*b=1, то число b является обратным числом для числа a .

Пример: для числа 9 обратным является 1/9 , так как 9*1/9= 1 , для числа 5 - обратное число 1/5 , так как 5* 1/5 = 1 .

5. Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10 000, …, 10^n 1 0 , 1 0 0 0 , 1 0 0 0 0 , . . . , 1 0 n .

Например: 6/10=0,6; 44/1000=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 51/10=5,1; 763/100=7,63

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

менателем, который является делителем некой степени числа 10 .

Пример: 5 - делитель числа 100 , поэтому дробь 1/5=1 *20/5*20=20/100=0,2 0 = 0 , 2 .

6. Арифметические действия над десятичными дробями

6.1. Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

6.2. Вычитание десятичных дробей

Выполняется аналогично сложению.

6.3. Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 2 7 ⋅ 1 3 = 3 5 1 . Отделяем справа две цифры запятой (у первого и второго числа - одна цифра после запятой; 1+1=2 1 + 1 = 2 ). В итоге получаем 2,7 \cdot 1,3=3,51 2 , 7 ⋅ 1 , 3 = 3 , 5 1 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10 000 = 14 700 1 , 4 7 ⋅ 1 0 0 0 0 = 1 4 7 0 0 .

6.4. Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

Например, 2,8: 0,09= 28/10: 9/100= 28*100/10*9=2800/90=280/9 = 31 1/9 .

При слове "дроби" у многих бегут мурашки. Потому что вспоминается школа и задания, которые решались на математике. Это являлось обязанностью, которую необходимо было выполнить. А что если относиться к заданиям, содержащим правильные и неправильные дроби, как к головоломке? Ведь многие взрослые решают цифровые и японские кроссворды. Разобрались в правилах, и все. Так же и здесь. Стоит только вникнуть в теорию - и все встанет на свои места. А примеры превратятся в способ потренировать мозг.

Какие виды дробей существуют?

Для начала о том, что это такое. Дробь — число, которое имеет некоторую часть от единицы. Ее можно записать в двух видах. Первый носит название обыкновенной. То есть такая, у которой есть горизонтальная или наклонная черта. Она приравнивается к знаку деления.

В такой записи число, стоящее над черточкой, называется числителем, а под ней — знаменателем.

Среди обыкновенных выделяют правильные и неправильные дроби. У первых числитель по модулю всегда меньше знаменателя. Неправильные потому так и называются, что у них все наоборот. Значение правильной дроби всегда меньше единицы. В то время как неправильная всегда больше этого числа.

Есть еще смешанные числа, то есть такие у которых имеются целая и дробная части.

Второй вид записи — десятичная дробь. О ней отдельный разговор.

Чем отличаются неправильные дроби от смешанных чисел?

По своей сути, ничем. Это просто разная запись одного и того же числа. Неправильные дроби после несложных действий легко становятся смешанными числами. И наоборот.

Все зависит от конкретной ситуации. Иногда в заданиях удобнее использовать неправильную дробь. А порой необходимо перевести ее в смешанное число и тогда пример решится очень легко. Поэтому, что использовать: неправильные дроби, смешанные числа, - зависит от наблюдательности решающего задачу.

Смешанное число еще сравнивают с суммой целой части и дробной. Причем вторая всегда меньше единицы.

Как представить смешанное число в виде неправильной дроби?

Если требуется выполнить какое-либо действие с несколькими числами, которые записаны в разных видах, то нужно сделать их одинаковыми. Один из методов — представить числа в виде неправильных дробей.

Для этой цели потребуется выполнить действия по такому алгоритму:

  • умножить знаменатель на целую часть;
  • прибавить к результату значение числителя;
  • записать ответ над чертой;
  • знаменатель оставить тем же.

Вот примеры того, как записать неправильные дроби из смешанных чисел:

  • 17 ¼ = (17 х 4 + 1) : 4 = 69/4;
  • 39 ½ = (39 х 2 + 1) : 2 = 79/2.

Как записать неправильную дробь в виде смешанного числа?

Следующий прием противоположен рассмотренному выше. То есть когда все смешанные числа заменяются на неправильные дроби. Алгоритм действий будет таким:

  • разделить числитель на знаменатель до получения остатка;
  • записать частное на месте целой части смешанного;
  • остаток следует разместить над чертой;
  • делитель будет знаменателем.

Примеры такого преобразования:

76/14; 76:14 = 5 с остатком 6; ответом будет 5 целых и 6/14; дробную часть в этом примере нужно сократить на 2, получится 3/7; итоговый ответ — 5 целых 3/7.

108/54; после деления получается частное 2 без остатка; это значит, что не все неправильные дроби удается представить в виде смешанного числа; ответом будет целое — 2.

Как целое число превратить в неправильную дробь?

Бывают ситуации, когда необходимо и такое действие. Чтобы получить неправильные дроби с заранее известным знаменателем, потребуется выполнить такой алгоритм:

  • умножить целое число на нужный знаменатель;
  • записать это значение над чертой;
  • разместить под ней знаменатель.

Самый простой вариант, когда знаменатель равен единице. Тогда ничего умножать не нужно. Достаточно просто написать целое число, которое дано в примере, а под чертой расположить единицу.

Пример : 5 сделать неправильной дробью со знаменателем 3. После умножения 5 на 3 получается 15. Это число будет знаменателем. Ответ задания дробь: 15/3.

Два подхода к решению заданий с разными числами

В примере требуется вычислить сумму и разность, а также произведение и частное двух чисел: 2 целых 3/5 и 14/11.

В первом подходе смешанное число будет представлено в виде неправильной дроби.

После выполнения действий, описанных выше, получится такое значение: 13/5.

Для того чтобы узнать сумму, нужно привести дроби к одинаковому знаменателю. 13/5 после умножения на 11 станет 143/55. А 14/11 после умножения на 5 примет вид: 70/55. Для вычисления суммы нужно только сложить числители: 143 и 70, а потом записать ответ с одним знаменателем. 213/55 — эта неправильная дробь ответ задачи.

При нахождении разности эти же числа вычитаются: 143 - 70 = 73. Ответом будет дробь: 73/55.

При умножении 13/5 и 14/11 не нужно приводить к общему знаменателю. Достаточно перемножить попарно числители и знаменатели. Получится ответ: 182/55.

Так же и при делении. Для правильного решения нужно заменить деление на умножение и перевернуть делитель: 13/5: 14/11 = 13/5 х 11/14 = 143/70.

Во втором подходе неправильная дробь обращается в смешанное число.

После выполнения действий алгоритма 14/11 обратится в смешанное число с целой частью 1 и дробной 3/11.

Во время вычисления суммы нужно сложить целые и дробные части по отдельности. 2 + 1 = 3, 3/5 + 3/11 = 33/55 + 15/55 = 48/55. Итоговый ответ получается 3 целых 48/55. В первом подходе была дробь 213/55. Проверить правильность можно, переведя его в смешанное число. После деления 213 на 55 получается частное 3 и остаток 48. Нетрудно заметить, что ответ правильный.

При вычитании знак «+» заменяется на «-». 2 - 1 = 1, 33/55 - 15/55 = 18/55. Для проверки ответ из предыдущего подхода нужно перевести в смешанное число: 73 делится на 55 и получается частное 1 и остаток 18.

Для нахождения произведения и частного пользоваться смешанными числами неудобно. Здесь всегда рекомендуется переходить к неправильным дробям.

В данном разделе рассматриваются действия с обыкновенными дробями. В случае, если необходимо провести математическую операцию со смешанными числами, то достаточно перевести смешанную дробь в необыкновенную, провести необходимые операции и, в случае необходимости, конечный результат снова представить в виде смешанного числа. Данная операция будет описана ниже.

Сокращение дроби

Математическая операция. Сокращение дроби

Чтобы сократить дробь \frac{m}{n} нужно найти наибольший общий делитель ее числителя и знаменателя: НОД(m,n), после чего поделить числитель и знаменатель дроби на это число. Если НОД(m,n)=1, то дробь сократить нельзя. Пример: \frac{20}{80}=\frac{20:20}{80:20}=\frac{1}{4}

Обычно сразу найти наибольший общий делитель представляется сложной задачей и на практике дробь сокращают в несколько этапов, пошагово выделяя у числителя и знаменателя очевидные общие множители. \frac{140}{315}=\frac{28\cdot5}{63\cdot5}=\frac{4\cdot7\cdot5}{9\cdot7\cdot5}=\frac{4}{9}

Приведение дробей к общему знаменателю

Математическая операция. Приведение дробей к общему знаменателю

Чтобы привести две дроби \frac{a}{b} и \frac{c}{d} к общему знаменателю нужно:

  • найти наименьшее общее кратное знаменателей: M=НОК(b,d);
  • умножить числитель и знаменатель первой дроби на M/b (после чего знаменатель дроби становится равным числу M);
  • умножить числитель и знаменатель второй дроби на M/d (после чего знаменатель дроби становится равным числу M).

Тем самым мы преобразуем исходные дроби к дробям с одинаковыми знаменателями (которые будут равны числу M).

Например, дроби \frac{5}{6} и \frac{4}{9} имеют НОК(6,9) = 18. Тогда: \frac{5}{6}=\frac{5\cdot3}{6\cdot3}=\frac{15}{18};\quad\frac{4}{9}=\frac{4\cdot2}{9\cdot2}=\frac{8}{18} . Тем самым полученные дроби имеют общий знаменатель.

На практике нахождение наименьшего общего кратного (НОК) знаменателей является не всегда простой задачей. Поэтому в качестве общего знаменателя выбирается число, равное произведению знаменателей исходных дробей. Например, дроби \frac{5}{6} и \frac{4}{9} приводятся к общему знаменателю N=6\cdot9:

\frac{5}{6}=\frac{5\cdot9}{6\cdot9}=\frac{45}{54};\quad\frac{4}{9}=\frac{4\cdot6}{9\cdot6}=\frac{24}{54}

Сравнение дробей

Математическая операция. Сравнение дробей

Для сравнения двух обыкновенных дробей необходимо:

  • сравнить числители получившихся дробей; дробь с большим числителем будет больше.
Например, \frac{9}{14}

При сравнении дробей имеются несколько частных случаев:

  1. Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}
  2. Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13}
  3. Та дробь, у которой одновременно больший числитель и меньший знаменатель , больше. Например, \frac{11}{3}>\frac{10}{8}

Внимание! Правило 1 действует для любых дробей, если их общий знаменатель является положительным числом. Правила 2 и 3 действуют для положительных дробей (у которых и числитель и знаменатель больше нуля).

Сложение и вычитание дробей

Математическая операция. Сложение и вычитание дробей

Чтобы сложить две дроби, нужно:

  • привести их к общему знаменателю;
  • сложить их числители, а знаменатель оставить без изменений.

Пример: \frac{7}{9}+\frac{4}{7}=\frac{7\cdot7}{9\cdot7}+\frac{4\cdot9}{7\cdot9}=\frac{49}{63}+\frac{36}{63}=\frac{49+36}{63}=\frac{85}{63}

Чтобы из одной дроби вычесть другую, нужно:

  • привести дроби к общему знаменателю;
  • из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений.

Пример: \frac{4}{15}-\frac{3}{5}=\frac{4}{15}-\frac{3\cdot3}{5\cdot3}=\frac{4}{15}-\frac{9}{15}=\frac{4-9}{15}=\frac{-5}{15}=-\frac{5}{3\cdot5}=-\frac{1}{3}

Если исходные дроби изначально имеют общий знаменатель, то пункт 1 (приведение к общему знаменателю) пропускается.

Преобразование смешанного числа в неправильную дробь и обратно

Математическая операция. Преобразование смешанного числа в неправильную дробь и обратно

Чтобы преобразовать смешанную дробь в неправильную, достаточно просуммировать целую часть смешанной дроби с дробной частью. Результатом такой суммы станет неправильная дробь, числитель которой равен сумме произведения целой части на знаменатель дроби с числителем смешанной дроби, а знаменатель останется прежним. Например, 2\frac{6}{11}=2+\frac{6}{11}=\frac{2\cdot11}{11}+\frac{6}{11}=\frac{2\cdot11+6}{11}=\frac{28}{11}

Чтобы преобразовать неправильную дробь в смешанное число необходимо:

  • поделить числитель дроби на ее знаменатель;
  • остаток от деления записать в числитель, а знаменатель оставить прежним;
  • результат от деления записать в качестве целой части.

Например, дробь \frac{23}{4} . При делении 23:4=5,75, то есть целая часть 5, остаток от деления равен 23-5*4=3. Тогда смешанное число запишется: 5\frac{3}{4} . \frac{23}{4}=\frac{5\cdot4+3}{4}=5\frac{3}{4}

Преобразование десятичной дроби в обыкновенную

Математическая операция. Преобразование десятичной дроби в обыкновенную

Для того, чтобы обратить десятичную дробь в обыкновенную, надо:

  1. в качестве знаменателя взять n-ую степень десяти (здесь n – количество десятичных знаков);
  2. в качестве числителя взять число, стоящее после десятичной точки (если целая часть исходного числа не равна нулю, то брать в том числе и все стоящие впереди нули);
  3. отличная от нуля целая часть записывается в числителе в самом начале; нулевая целая часть опускается.

Пример 1: 0.0089=\frac{89}{10000} (десятичных знаков 4, поэтому в знаменателе 10 4 =10000, поскольку целая часть равна 0, то в числителе записано число после десятичной точки без начальных нулей)

Пример 2: 31.0109=\frac{310109}{10000} (в числитель записываем число после десятичной точки со всеми нулями: "0109", а затем перед ним дописываем целую часть исходного числа "31")

Если целая часть десятичной дроби отлична от нуля, то её можно перевести в смешанную дробь. Для этого переводим число в обыкновенную дробь как если бы целая часть равнялась нулю (пункты 1 и 2), а целую часть просто переписываем перед дробью - это будет целая часть смешанного числа. Пример:

3.014=3\frac{14}{100}

Чтобы перевести обыкновенную дробь в десятичную, достаточно просто произвести деление числителя на знаменатель. Иногда получится бесконечная десятичная дробь. В этом случае необходимо произвести округление до нужного десятичного знака. Примеры:

\frac{401}{5}=80.2;\quad \frac{2}{3}\approx0.6667

Умножение и деление дробей

Математическая операция. Умножение и деление дробей

Чтобы перемножить две обыкновенные дроби, надо перемножить числители и знаменатели дробей.

\frac{5}{9}\cdot\frac{7}{2}=\frac{5\cdot7}{9\cdot2}=\frac{35}{18}

Чтобы разделить одну обыкновенную дробь на другую, надо умножить первую дробь на дробь, обратную второй (обратная дробь - дробь, в которой поменяны местами числитель и знаменатель).

\frac{5}{9}:\frac{7}{2}=\frac{5}{9}\cdot\frac{2}{7}=\frac{5\cdot2}{9\cdot7}=\frac{10}{63}

В случае, если одна из дробей является натуральным числом, то указанные выше правила умножения и деления остаются в силе. Просто нужно учитывать, что целое число это та же дробь, знаменатель которой равен единице. Например: 3:\frac{3}{7}=\frac{3}{1}:\frac{3}{7}=\frac{3}{1}\cdot\frac{7}{3}=\frac{3\cdot7}{1\cdot3}=\frac{7}{1}=7

Формулировка задачи: Найдите значение выражения (действия с дробями).

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 1 (Действия с дробями).

Рассмотрим, как решаются подобные задачи на примерах.

Пример задачи 1:

Найдите значение выражения 5/4 + 7/6: 2/3.

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. И выполним необходимые действия в нужном порядке:

Ответ: 3

Пример задачи 2:

Найдите значение выражения (3,9 – 2,4) ∙ 8,2

Ответ: 12,3

Пример задачи 3:

Найдите значение выражения 27 ∙ (1/3 – 4/9 – 5/27).

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: –8

Пример задачи 4:

Найдите значение выражения 2,7 / (1,4 + 0,1)

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: 1,8

Пример задачи 5:

Найдите значение выражения 1 / (1/9 – 1/12).

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: 36

Пример задачи 6:

Найдите значение выражения (0,24 ∙ 10^6) / (0,6 ∙ 10^4).

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: 40

Пример задачи 7:

Найдите значение выражения (1,23 ∙ 45,7) / (12,3 ∙ 0,457).

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: 10

Пример задачи 8:

Найдите значение выражения (728^2 – 26^2) : 754.

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке. Также в данном случае нужно применить формулу разности квадратов.

В 5 классе средней школы вводится представление дроби. Дробь – это число, состоящее из целого числа долей единиц. Обычные дроби записываются в виде ±m/n, число m называют числителем дроби, число n – его знаменателем. Если модуль знаменателя огромнее модуля числителя, скажем 3/4, то дробь именуется верной, в отвратном случае – неправильной. Дробь может содержать целую часть, скажем 5 * (2/3).К дробям дозволено использовать разные арифметические операции.

Инструкция

1. Приведение к всеобщему знаменателю.Пускай даны дроби a/b и c/d.- В первую очередь находится число НОК(наименьшее всеобщее кратное) для знаменателей дробей.- Числитель и знаменатель первой дроби умножается на НОК/b- Числитель и знаменатель 2-й дроби умножается на НОК/dПример приведён на рисунке.Для сопоставления дробей их нужно привести к всеобщему знаменателю, после этого сравнить числители. Скажем, 3/4 < 4/5, см. рисунок.

2. Сложение и вычитание дробей.Для нахождения суммы 2-х обычных дробей их нужно привести к всеобщему знаменателю, позже чего сложить числители, оставив знаменатель без изменений. Пример сложения дробей 1/2 и 1/3 приведён на рисунке.Разность дробей находится аналогичным образом, позже нахождения всеобщего знаменателя, числители дробей вычитаются, см. пример на рисунке.

3. Умножение и деление дробей.При умножении обычных дробей, числители и знаменатели перемножаются между собой.Для того, дабы поделить две дроби, нужно получить дробь обратную 2-й дроби, т.е. поменять его числитель и знаменатель местами, позже чего произвести умножение полученных дробей.

Модуль представляет собой безусловную величину выражения. Для обозначения модуля используют прямые скобки. Арестанты в них значения считаются взятыми по модулю. Решение модуля состоит в раскрытии модульных скобок по определенным правилам и нахождении множества значений выражения. В большинстве случаев модуль раскрывается таким образом, что подмодульное выражение получает ряд позитивных и негативных значений с том числе и нулевое значение. Исходя из данных свойств модуля, составляются и решаются дальше уравнения и неравенства начального выражения.

Инструкция

1. Запишите начальное уравнение с модулем. Для его решения раскройте модуль. Разглядите всякое подмодульное выражение. Определите, при каком значении входящих в него незнакомых величин выражение в модульных скобках обращается в нуль.

2. Для этого приравняйте подмодульное выражение к нулю и обнаружьте решение получившегося уравнения. Запишите обнаруженные значения. Таким же образом определите значения незнакомой переменной для всего модуля в заданном уравнении.

3. Разглядите случаи существования переменных, когда они хороши от нуля. Для этого запишите систему неравенств для всех модулей начального уравнения. Неравенства обязаны охватывать все допустимые значения переменной на числовой прямой.

4. Нарисуйте числовую прямую и отложите на ней полученные значения. Значения переменной в нулевом модуле будут служить ограничениями при решении модульного уравнения.

5. В начальном уравнении надобно раскрыть модульные скобки, меняя знак выражения так, дабы значения переменной соответствовали отображенным на числовой прямой. Решите полученное уравнение. Обнаруженное значение переменной проверьте на лимитация, заданное модулем. Если решение удовлетворяет условию, значит оно правдиво. Не удовлетворяющие ограничениям корни обязаны отбрасываться.

6. Аналогичным образом раскрывайте модули начального выражения с учетом знака и высчитывайте корни получаемого уравнения. Запишите все полученные корни, удовлетворяющие неравенствам ограничения.

Дробные числа разрешают выражать в различном виде точное значение величины. С дробями дозволено исполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Дабы обучиться решать дроби , нужно помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, всеобщего знаменателя. Некоторые арифметические действия позже выполнения требуют сокращения дробной части итога.

Вам понадобится

  • — калькулятор

Инструкция

1. Наблюдательно посмотрите на данные числа. Если среди дробей есть десятичные и непрвильные, изредка комфортнее сначала исполнить действия с десятичными, а после этого перевести их в неверный вид. Можете перевести дроби в такой вид первоначально, записав значение позже запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, поделив числа выше и ниже черты на один делитель. Дроби, в которых выдается целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к итогу числитель. Данное значения станет новым числителем дроби . Дабы выделить целую часть из изначально неправильной дроби , нужно поделить числитель на знаменатель. Целый итог записать слева от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью допустимо выполнение действий отдельно вначале для целой, а после этого для дробной частей. Скажем, сумма 1 2/3 и 2 ? может быть вычислена двумя методами:- Переведение дробей в неверный вид:- 1 2/3 + 2 ? = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;- Суммирование отдельно целых и дробных частей слагаемых:- 1 2/3 + 2 ? = (1+2) + (2/3 + ?) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

2. Для неправильных дробей с различными значениями под чертой обнаружьте всеобщий знаменатель. Скажем, для 5/9 и 7/12 всеобщим знаменателем будет 36. Для этого числитель и знаменатель первой дроби нужно умножить на 4 (получится 28/36), а 2-й – на 3 (получится 15/36). Сейчас можете исполнить нужные расчёты.

3. Если вы собираетесь вычислять сумму либо разность дробей, для начала запишите обнаруженный всеобщий знаменатель под черту. Исполните нужные действия между числителями, а итог запишите над чертой новой дроби . Таким образом, новым числителем станет разность либо сумма числителей изначальных дробей.

4. Для расчёта произведения дробей перемножьте числители дробей и запишите итог на место числителя итоговой дроби . То же самое проделайте для знаменателей. При делении одной дроби на иную запишите одну дробь, а после этого умножьте её числитель на знаменатель 2-й. При этом знаменатель первой дроби умножается соответственно на числитель 2-й. При этом происходит оригинальный переворот 2-й дроби (делителя). Итоговая дробь будет состоять из итогов умножения числителей и знаменателей обеих дробей. Нетрудно обучиться решать дроби , записанные в условии в виде «четырёхэтажной» дроби . Если черта разделяет две дроби , перепишите их через разграничитель «:» и продолжите обыкновенное деление.

5. Для приобретения финального итога полученную дробь сократите, поделив числитель и знаменатель на одно целое число, наибольшее допустимое в данном случае. При этом выше и ниже черты обязаны быть целые числа.

Обратите внимание!
Не исполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, дабы при умножении на него числителя и знаменателя всякой дроби в итоге знаменатели обеих дробей были равны.

Полезный совет
При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, либо знаменатель, дроби. Скажем, полтора килограмма риса в виде дроби запишется дальнейшим образом: 1 ? кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для комфорта вычислений такую дробь неизменно дозволено записать в неправильном виде: 1 2/10 кг картофеля. Для облегчения дозволено сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере допустимо деление на 2. В итоге получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь исполнять арифметические действия, представлены в одном виде.

Если вы пишете курсовую работу либо составляете какой-нибудь иной документ, содержащий расчетную часть, то вам никуда не деться от дробных выражений, которые также надобно напечатать. Как это сделать, разглядим дальше.

Инструкция

1. Кликните один раз по пункту меню «Вставка», после этого выберите пункт «Символ». Это один из самых примитивных методов вставки дроби в текст. Заключается он в дальнейшем. В комплекте готовых символов есть дроби . Их число, как водится, невелико, но если вам в тексте необходимо написать?, а не 1/2, то для вас сходственный вариант будетсамым оптимальным. Помимо того, число символов дробей может зависеть и от шрифта. Скажем, для шрифта Times New Roman дробей немножко поменьше, чем для того же Arial. Варьируйте шрифтами, дабы обнаружить самый наилучший вариант, если дело касается примитивных выражений.

2. Кликните по пункту меню «Вставка» и выберите подпункт «Объект». Перед вами появится окно с перечнем допустимых объектов для вставки. Выберите среди них Microsoft Equation 3.0. Это приложение поможет вам печатать дроби . Причем не только дроби , но и трудные математические выражения, содержащие разные тригонометрические функции и прочие элементы. Двукратно кликните по этому объекту левой кнопкой мышки. Перед вами появится окно, содержащее много символов.

3. Дабы напечатать дробь, выберите символ изображающий дробь с пустым числителем и знаменателем. Кликните по нему один раз левой кнопкой мыши. Появится дополнительное меню, уточняющее схему самой дроби . Может быть несколько ее вариантов. Выберите особенно для вас подходящий и кликните по нему один раз левой кнопкой мыши.

4. Введите в числителе и знаменателе дроби все необходимые данные. Это будет протекать теснее непринужденно на листе документа. Дробь будет вставлена отдельным объектом, тот, что в случае необходимости дозволено переместить в всякое место документа. Вы можете напечатать многоэтажные дроби . Для этого разместите в числитель либо знаменатель (как вам надобно) еще одну дробь, которую дозволено предпочесть в окне того же приложения.

Видео по теме

Алгебраическая дробь - это выражение вида А/В, где буквы А и В обозначают всякие числовые либо буквенные выражения. Нередко числитель и знаменатель в алгебраических дробях имеют массивный вид, но действия с такими дробями следует делать по тем же правилам, что и действия с обычными, где числитель и знаменатель - целые правильные числа.

Инструкция

1. Если даны смешанные дроби , переведите их в неправильные (дробь, в которой числитель огромнее знаменателя): умножьте знаменатель на целую часть и прибавьте числитель. Так число 2 1/3 превратится в 7/3. Для этого 3 умножают на 2 и прибавляют единицу.

2. Если нужно перевести десятичную дробь в неправильную, то представьте ее как деление числа без запятой на единицу со столькими нулями, сколько чисел стоит позже запятой. Скажем, число 2,5 представьте как 25/10 (если сократить, то получится 5/2), а число 3,61 — как 361/100. Оперировать с неправильными дробями нередко легче, чем со смешанными либо десятичными.

3. Если дроби имеют идентичные знаменатели, а вам нужно их сложить, то примитивно сложите числители; знаменатели остаются без изменений.

4. При необходимости произвести вычитание дробей с идентичными знаменателями из числителя первой дроби вычтите числитель 2-й дроби. Знаменатели при этом также не меняются.

5. Если нужно сложить дроби либо вычесть одну дробь из иной, а они имеют различные знаменатели, приведите дроби к всеобщему знаменателю. Для этого обнаружьте число, которое будет наименьшим всеобщим кратным (НОК) обоим знаменателям либо нескольким, если дробей огромнее 2-х. НОК - это число, которое разделится на знаменатели всех данных дробей. К примеру, для 2 и 5 это число 10.

6. Позже знака «равно» проведите горизонтальную черту и запишите в знаменатель это число (НОК). Проставьте к всякому слагаемому добавочные множители - то число, на которое нужно домножить и числитель, и знаменатель, дабы получить НОК. Ступенчато умножайте числители на добавочные множители, сберегая знак сложения либо вычитания.

7. Посчитайте итог, сократите его при необходимости либо выделите целую часть. Для примера — нужно сложить? и?. НОК для обеих дробей - 12. Тогда добавочный множитель к первой дроби - 4, ко 2-й - 3. Итого: ?+?=(1·4+1·3)/12=7/12.

8. Если дан пример на умножение, перемножьте между собой числители (это будет числитель итога) и знаменатели (получится знаменатель итога). В этом случае к всеобщему знаменателю их приводить не нужно.

9. Дабы поделить дробь на дробь, нужно опрокинуть вторую дробь «вверх ногами» и перемножить дроби. То есть а/b: с/d = a/b · d/c.

10. Раскладывайте числитель и знаменатель на множители, если это требуется. Скажем, переносите всеобщий множитель за скобку либо раскладывайте по формулам сокращённого умножения, дабы после этого дозволено было при необходимости сократить числитель и знаменатель на НОД — минимальный всеобщий делитель.

Обратите внимание!
Числа складывайте с числами, буквы одного рода с буквами того же рода. Скажем, невозможно сложить 3a и 4b, значит в числителе так и останется их сумма либо разность - 3a±4b.

Видео по теме