Как пишется расчетно графическая работа. Особенности выполнения расчетно-графической работы. Кафедра "Информационные технологии"

Любой студент знает, что такое расчетно-графическая работа. Это такой вид учебного материала, который практически полностью похож на обычную курсовую. Но основное отличие все же есть. Оно состоит в том, что задание по расчетно-графической работе дается каждому студенту в индивидуальном порядке. Тематика при этом не меняется, но вариант у каждого студента свой. То есть, полностью исключается минимальная возможность списать или скачать готовую работу

Особенности написания РГР

Когда вы получили свою тему РГР, то вам необходимо запастись теоретическим материалом для того, чтобы составить план работы. Также требуется изучить написанные ранее конспекты по предмету. Возможно, у вас были какие – то задачи, которые так или иначе связаны с РГР. Обычно педагоги дают задание по ранее изученной тематике.

Когда все материалы подготовлены, следует прочитать как можно более вкрадчиво условие задачи, а также выписать все числовые показатели. Потом можно приступать к составлению эскиза. Масштаб выбирается в соответствии с задание. Но если в задании не указано, какой масштаб взять, то надо использовать стандартный размер.

В РГР обязательно должны присутствовать пункты с решение. Каждый пункт должен сопровождаться описанием. При этом не следует копировать описание из учебника. Оно должно быть полностью уникальным. То есть, вы своими словами описываете результаты своих вычислений и последовательность своих действий.

Не следует перегружать РГР излишней теорией, ведь это техническая работа. Теория здесь присутствует только в качестве небольших описаний. Все вычисления должны быть минимизированы. То есть, чтобы получить нужный результат, не нужно описывать те действия, которые не несут смысловой нагрузки. Раньше чертежи делались вручную, и это усложняло процесс написания РГР. Сегодня ручному вычислению пришло машинное, что наиболее удобно для современных студентов. Но не каждый умеет пользоваться инновационными программными средствами. Вот тут и начинаются проблемы с решением РГР.

Заказ РГР в Росдипломе

В нашей компании есть большой штат авторов, специализирующихся именно на таком виде работы, как РГР. Наши сотрудники имеют соответствующие знания и должный уровень подготовки. На выходе вы получаете уникальный грамотный проект, который станет вашей гордостью перед преподавателем. РГР вы сдадите на отлично, будьте в этом уверены.

Наши авторы аккуратно оформят ваш чертеж и описание к нему. Преподавателю будет приятно и удобно работать с таким материалом, и он обязательно это оценит. Более того, результат труда нашего автор станет понятен и самому заказчику. Если у вас возникают какие-либо вопросы, то автор готов всегда дать подробное объяснение.

Если по какой-либо причине преподаватель отправляет РГР на доработку, то наш автор все исправит совершенно бесплатно и в минимальный срок.

Сколько стоит РГР в Росдипломе

Стоимость РГР в Росдиплом не фиксирована заранее. ТО есть, мы не озвучиваем цену то того, как вы пришлете нам описание работы. Сначала надо ознакомиться со всеми тонкостями заказа, изучить специфику. И только потом наш менеджер озвучит вам сумму заказа. Вы можете либо принять ее, либо отказаться от заказа работы.

Заказывайте работы в Росдиплом и вы не пожалеете!

ЗАДАНИЯ ДЛЯ РАСЧЕТНО-ГРАФИЧЕСКИХ РАБОТ

Прежде чем приступить к выполнению задания, следует изучить соответствующий теоретический материал по учебнику или конспекту лекций и подробно разобрать приведенные там примеры; разобрать задачи, рассмотренные на практических занятиях.

Приступая к решению задания, надо разобраться в условии задачи и рисунке.

Перед решением каждой задачи надо выписать полностью ее условие с числовыми данными, составить аккуратный эскиз в масштабе и указать на нем в числах все величины, необходимые для расчета.

Решение должно сопровождаться краткими, последовательными и грамотными без сокращения слов объяснениями и чертежами, на которых все входящие в расчет величины должны быть показаны в числах. Надо избегать многословных пояснений и пересказа учебника: студент должен знать, что язык техники - формула и чертеж. При пользовании формулами или данными, отсутствующими в учебнике, необходимо кратко и точно указывать источник (автор, название, издание, страница, номер формулы).

Не следует вычислять большое число значащих цифр, вычисления должны соответствовать необходимой точности. Нет необходимости длину деревянного бруса в стропилах вычислять с точностью до миллиметра, но было бы ошибкой округлять до целых миллиметров диаметр вала, на который будет насажен шариковый подшипник.

Чертежи, схемы следует выполнять при помощи чертежных принадлежностей.

Все параметры, необходимые для расчета: векторы, оси координат, углы, размеры должны быть изображены на рисунке.

Чертеж должен быть аккуратным, его размеры должны позволить ясно показать все силы или векторы скорости и ускорения и др.; показывать все эти векторы и координатные оси на чертеже, а также указывать единицы получае­мых величин нужно обязательно. Решение задач необходимо сопровождать краткими пояснениями (какие формулы или теоремы применяются, как полу­чаются те или иные результаты и т.д.) и подробно излагать весь ход расче­тов. На каждой странице следует оставлять поля для замечаний рецензента.

Работы выполняются на писчей бумаге формата А4 , чернилами (не красными), четким почерком, с полями.

В возвращенной расчетно-графической работе студент должен исправить все отмеченные ошибки и выполнить все данные ему указания. В случае требования рецензента следует в кратчайший срок послать ему выполненные на отдельных листах исправления, которые должны быть вложены в соответствующие места рецензированной работы. Отдельно от работы исправления не рассматриваются.

На экзамен необходимо представить зачтенные по разделам курса кон­трольные задания, в которых все отмеченные рецензентом погрешности долж­ны быть исправлены.

При чтении текста каждой задачи учесть следующее. Большинство ри­сунков дано без соблюдения масштабов. На рисунках к задачам все линии, па­раллельные строкам, считаются горизонтальными, а перпендикулярные стро­кам - вертикальными, и это в тексте задач специально не оговаривается. Также считается, что все нити (веревки, тросы) являются нерастяжимыми и невесо­мыми; нити, перекинутые через блок, по блоку не скользят; катки и колеса (для задач по кинематике и динамике) катятся по плоскостям без скольжения. Все связи, если не сделаны уточнения, считаются идеальными.

Когда тела на рисунке пронумерованы, то в тексте задач и в таблице P 1 , t 1 , r 1 и т.д. означают вес или размеры тела 1; P 2 , t 2 , r 2 - тела 2 и т.д. Анало­гично в кинематике и динамике V B , W B означают скорость и ускорение точки В ; V c , W c - точки С; 𝜔 1 , 𝜀 1 - угловую скорость и угловое ускорение тела 1; 𝜔 2 , 𝜀 2 - тела 2 и т.д. Для каждой задачи подобные обозначения могут тоже спе­циально не оговариваться.

Следует также иметь в виду, что некоторые из заданных в условиях зада­чи величин (размеров) при решении каких-то вариантов могут не понадобиться, они нужны для решения других вариантов задачи.

Выбор варианта

Из тридцати схем, предлагаемого задания, студент должен выбрать только одну, номер которой соответствует порядковому номеру его фамилии в журнале преподавателя на начало семестра.

Задание, выполненное не по своему варианту, к защите не принимается.

Защита расчетно-графических работ производится в соответствии с графиком учебного процесса.

При защите задания студент должен дать объяснение по его содержанию, уметь решать типовые задачи и давать ответы по теории соответствующего раздела курса.

Все задачи взяты из следующего источника: Кирсанов М.Н. Решебник . Теоретическая механика /П од ред. А.И.Кириллова . – М.:Физматлит , 2008. -384 с.

СТАТИКА

ПЛОСКАЯ СИСТЕМА СИЛ

Задача 1. ПРОСТАЯ СТЕРЖНЕВАЯ СИСТЕМА

Определить усилия во всех стержнях данной стержневой системы при воздействии на нее силы P .

Данные и схемы брать из таблицы 1 согласно номеру группы и вашему варианту.

Таблица 1

Задача 2. РАВНОВЕСИЕ ЦЕПИ ИЗ 3 ЗВЕНЬЕВ

Найти угол α в положении равновесия цепи и усилия в стержнях.

Данные и схемы брать из таблицы 2 согласно номеру группы и вашему варианту.

Таблица 2

Задача 3. ТЕОРЕМА О ТРЕХ СИЛАХ

Тело находится в равновесии под действием трех сил, одна из которых известный вес тела G P , другая - реакция опоры в точке B (гладкая опора или опорный стержень) с известным направлением, а третья – реакция неподвижного шарнира А . Используя теорему о трех силах, найти неизвестные реакции опор (в кН). Размеры указаны в см .

Данные и схемы брать из таблицы 3 согласно номеру группы и вашему варианту.

Таблица 3

Задача 4. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ТОЧКИ

Найти момент силы F относительно начала координат.

Данные и схемы брать из таблицы 4 согласно номеру группы и вашему варианту.

Таблица 4

Задача 5. ФЕРМА. ПРЯМОУГОЛЬНАЯ РЕШЕТКА

Определить опорные реакции и усилия в стержнях 1-5 данной фермы с прямоугольной решеткой привоздействии на нее сил P , Q , F .

Данные и схемы брать из таблицы 5 согласно номеру группы и вашему варианту.

Таблица 5

Задача 6. ФЕРМА. ТРЕУГОЛЬНАЯ РЕШЕТКА

Определить опорные реакции и усилия во всех стержнях данной фермы с треугольной решеткой привоздействии на нее сил P , Q , F .

Данные и схемы брать из таблицы 6 согласно номеру группы и вашему варианту.

Таблица 6

Задача 7. ФЕРМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

К плоской ферме приложены две одинаковые силы P . Найти усилия в стержнях 1 и 2 (выделены утолщением). Размеры даны в метрах.

Данные и схемы брать из таблицы 7 согласно номеру группы и вашему варианту.

Таблица 7

Задача 8. РАВНОВЕСИЕ ПРОСТОЙ РАМЫ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Определить реакции опор рамы; cos α =0,8.

Данные и схемы брать из таблицы 8 согласно номеру группы и вашему варианту.

Таблица 8

Задача 9. РАВНОВЕСИЕ ТЯЖЕЛОЙ РАМЫ

Тяжелая однородная рама расположена в вертикальной плоскости и опирается на неподвижный шарнир А и наклонный невесомый стержень Н . К раме приложены горизонтальная сила Р , наклонная сила Q и момент М . Учитывая погонный вес рамы ρ , найти реакции опор.

Данные и схемы брать из таблицы 9 согласно номеру группы и вашему варианту.

Таблица 9

Задача 10. РАСЧЕТ ПРОСТОЙ СОСТАВНОЙ КОНСТРУКЦИИ

Данные и схемы брать из таблицы 10 согласно номеру группы и вашему варианту.

Таблица 10

Задача 11. РАСЧЕТ СОСТАВНОЙ КОНСТРУКЦИИ БЕЗ УЧЕТА ВЕСА

Рама состоит из двух частей, соединенных шарниром или скользящей заделкой. Размеры даны в метрах. Найти реакции опор.

Данные и схемы брать из таблицы 11 согласно номеру группы и вашему варианту.

Таблица 11

Задача 12. РАСЧЕТ СОСТАВНОЙ КОНСТРУКЦИИ С УЧЕТОМ ВЕСА

Рама состоит из двух частей, соединенных шарниром или скользящей заделкой. Дан погонный вес рамы ρ , размеры и нагрузки. Найти реакции опор.

Данные и схемы брать из таблицы 12 согласно номеру группы и вашему варианту.

Таблица 12

Задача 13. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ПЛАСТИНЫ И УГОЛКА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Данные и схемы брать из таблицы 13 согласно номеру группы и вашему варианту.

Таблица 13

Задача 14. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ТРЕХ ТЕЛ С НИТЬЮ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Конструкция состоит из прямоугольной пластины и жесткого уголка, изогнутого под прямым углом. Тела соединены двумя невесомыми стержнями. Определить реакции опор конструкции (в кН). Размеры даны в метрах.

Данные и схемы брать из таблицы 14 согласно номеру группы и вашему варианту.

Таблица 14

Задача 15. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ТРЕХ ТЕЛ

Определить реакции опор конструкции (в кН), состоящей из трех тел, соединенных в точке С шарниром. Размеры указаны в метрах.

Данные и схемы брать из таблицы 15 согласно номеру группы и вашему варианту.

Таблица 15

Задача 16. СОСТАВНАЯ КОНСТРУКЦИЯ ИЗ ТРЕХ ТЕЛ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Найти реакции опор составной конструкции. Размеры даны в метрах.

Данные и схемы брать из таблицы 16 согласно номеру группы и вашему варианту.

Таблица 16

Задача 17. РАСЧЕТ СОСТАВНОЙ КОНСТРУКЦИИ С РАСПРЕДЕЛЕННЫМИ НАГРУЗКАМИ

Найти реакции опор плоской составной рамы, находящейся под действием линейно распределенной нагрузки с максимальной интенсивностью q 1 и нагрузки с интенсивностью q 2 , равномерно распределенной по дуге окружности. Участок CD представляет собой четверть окружности радиуса R с центром О .

Данные и схемы брать из таблицы 17 согласно номеру группы и вашему варианту.

Таблица 17

Задача 18. РАСЧЕТ ПРОСТОЙ СОСТАВНОЙ КОНСТРУКЦИИ ДЛЯ ЗАЧЕТОВ И ЭКЗАМЕНОВ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Определить реакции опор конструкции (в кН), состоящей из двух тел.

Данные и схемы брать из таблицы 18 согласно номеру группы и вашему варианту.

Таблица 18

Задача 19. ТРЕНИЕ КАЧЕНИЯ

Система состоит из двух цилиндров весом G 1 и G 2 с одинаковыми радиусами R соединенных однородным стержнем весом G 3 . Цилиндры могут кататься без проскальзывания, цилиндр 1 без сопротивления, а цилиндр 2 с трением качения (δ ). В каких пределах меняется внешний момент М при условии равновесия системы?

Данные и схемы брать из таблицы 19 согласно номеру группы и вашему варианту.

Таблица 19

ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ

Задача 20. ПРОСТРАНСТВЕННАЯ ФЕРМА

Найти усилия в стержнях 1-6 пространственной фермы, нагруженной в одном узле вертикальной силой G и горизонтальной F . Ответ выразить в кН.

Данные и схемы брать из таблицы 20 согласно номеру группы и вашему варианту.

Таблица 20

Задача 21. ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ПРОСТЕЙШЕМУ ВИДУ

Систему трех сил, приложенных к вершинам параллелепипеда, привести к началу координат. Найти координаты точки пересечения центральной винтовой оси с плоскостью xy . Размеры на рисунках даны в м , силы в – Н.

Данные и схемы брать из таблицы 21 согласно номеру группы и вашему варианту.

Таблица 21

Задача 22. МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ОСЕЙ

Найти моменты сил относительно осей. Размеры на рисунках даны в м , силы в – Н.

Данные и схемы брать из таблицы 22 согласно номеру группы и вашему варианту.

Таблица 22

Задача 23. ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ, ПОДДЕРЖИВАЮЩИХ ПЛИТУ

Однородная прямоугольная горизонтальная плита весом G опирается на шесть невесомых шарнирно закрепленных по концам стержней. Вдоль ребра плиты действует сила F . Определить усилия в стержнях (в кН).

Данные и схемы брать из таблицы 23 согласно номеру группы и вашему варианту.

Таблица 23

Задача 24. ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В ОПОРАХ, ПОДДЕРЖИВАЮЩИХ ПОЛКУ

G имеет в точке А сферическую опору и поддерживается двумя невесомыми, шарнирно закрепленными по концам, стержнями (горизонтальным и вертикальным) и подпоркой BC . К полке приложена сила F , направленная вдоль одного из ее ребер. Определить реакции опор (в кН).

Данные и схемы брать из таблицы 24 согласно номеру группы и вашему варианту.

Таблица 24

Задача 25. ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В ОПОРАХ, ПОДДЕРЖИВАЮЩИХ ПОЛКУ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Горизонтальная однородная прямоугольная полка весом G имеет в точке А сферическую опору и поддерживается двумя невесомыми, шарнирно закрепленными по концам, стержнями (горизонтальным 1 и вертикальным 2) и подпоркой BC . К полке приложена сила F , направленная вдоль одного из ее ребер. Определить реакции опор (в кН).

Данные и схемы брать из таблицы 25 согласно номеру группы и вашему варианту.

Таблица 25

Задача 26. РАВНОВЕСИЕ ВАЛА

Горизонтальный вал весом G может вращаться в цилиндрических шарнирах А и В . К шкиву 1 приложено нормальное давление N и касательная сила сопротивления F , пропорциональная N . На шкив 2 действуют сила натяжения ремней T 1 и T 2 . Груз Q висит на нити, навитой на шкив 3. Определить силу давления N и реакции шарниров в условии равновесия вала (в Н). Учесть веса шкивов P 1 , P 2 , P 3 . Все нагрузки действуют в вертикальной плоскости. Силы даны в Н, размеры в – см.

Данные и схемы брать из таблицы 26 согласно номеру группы и вашему варианту.

Таблица 26

ЦЕНТР ТЯЖЕСТИ

Задача 27. ЦЕНТР ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ

Найти площадь (в м 2 ) и координаты центра тяжести плоской фигуры (в м). Отметки на осях даны в метрах. Криволинейный участок контура является дугой половины или четверти окружности.

Данные и схемы брать из таблицы 27 согласно номеру группы и вашему варианту.

Таблица 27

Задача 28. ЦЕНТР ТЯЖЕСТИ ОБЪЕМНОГО ТЕЛА

Найти координаты центра тяжести однородного объемного тела. Размеры даны в метрах.

Данные и схемы брать из таблицы 28 согласно номеру группы и вашему варианту.

Таблица 28

Задача 29. ЦЕНТР ТЯЖЕСТИ ПРОСТРАНСТВЕННОЙ СТЕРЖНЕВОЙ ФИГУРЫ

Найти координаты центра тяжести пространственной фигуры, состоящей из шести однородных стержней. Размеры даны в метрах.

Данные и схемы брать из таблицы 29 согласно номеру группы и вашему варианту.

Таблица 29

КИНЕМАТИКА

ДВИЖЕНИЕ ТОЧКИ

Задача 30. ДВИЖЕНИЕ ТОЧКИ В ПЛОСКОСТИ

Точка движется по закону x = x (t ) и y = y (t ). Для момента времени t = t 1 найти скорость, ускорение точки и радиус кривизны траектории (x и y даны в см, t 1 в сек).

Данные и схемы брать из таблицы 30 согласно номеру группы и вашему варианту.

Таблица 30

Задача 31. ДВИЖЕНИЕ ТОЧКИ В ПРОСТРАНСТВЕ. ДЕКАРТОВЫ КООРДИНАТЫ

Точка движется по закону x = x (t ), y = y (t ) и z = z (t ). Определить скорость, ускорение точки и радиус кривизны траектории при t = t 1 . (x , y и z даны в см, t и t 1 в сек).

Данные и схемы брать из таблицы 31 согласно номеру группы и вашему варианту.

Таблица 31

Задача 32. ЕСТЕСТВЕННЫЙ СПОСОБ ЗАДАНИЯ ДВИЖЕНИЯ ТОЧКИ

Точка движется по плоской кривой y = y (t )с постоянной скоростью v . Определить ускорение точки, радиус кривизны траектории и косинус угла наклона касательной к траектории с осью ox при заданном значении x .

Данные и схемы брать из таблицы 32 согласно номеру группы и вашему варианту.

Таблица 32

Задача 33. ДВИЖЕНИЕ ТОЧКИ В ПОЛЯРНЫХ КООРДИНАТАХ

Задан закон движения точки в полярных координатах: ρ = ρ (t ) (в метрах), φ = φ (t ). В указанный момент времени найти скорость и ускорение точки в полярных, декартовых и естественных координатах.

Данные и схемы брать из таблицы 33 согласно номеру группы и вашему варианту.

Таблица 33

ПЛОСКОЕ ДВИЖЕНИЕ

Задача 34 . СКОРОСТИ ТОЧЕК МНОГОЗВЕННОГО МЕХАНИЗМА

Плоский многозвенный механизм с одной степенью свободы приводится в движение кривошипом, который вращается против часовой стрелки с постоянной угловой скоростью. Найти скорости точек механизма (в см /с) и угловые скорости его звеньев (в рад/с). Размеры даны в см .

Данные и схемы брать из таблицы 34 согласно номеру группы и вашему варианту.

Таблица 34

Задача 35. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК МНОГОЗВЕННОГО МЕХАНИЗМА (4 ЗВЕНА)

Найти скорости и ускорения шарниров плоского механизма.

Данные и схемы брать из таблицы 35 согласно номеру группы и вашему варианту.

Таблица 35

Задача 36. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК МНОГОЗВЕННОГО МЕХАНИЗМА (6 ЗВЕНЬЕВ)

Найти скорости точек A , B , C , D , F , G и ускорения указанных точек.

Данные и схемы брать из таблицы 36 согласно номеру группы и вашему варианту.

Таблица 3 6

Задача 37. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма задана угловая скорость одного из его звеньев. Длины звеньев даны в сантиметрах. Найти угловые скорости звеньев механизма.

Данные и схемы брать из таблицы 37 согласно номеру группы и вашему варианту.

Таблица 37

Задача 38. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма задана угловая скорость одного из звеньев. Длины звеньев даны в сантиметрах. Стержни, направление которых не указано, считать горизонтальными или вертикальными. Диск катится по горизонтальной поверхности без проскальзывания. Найти угловые скорости всех звеньев механизма.

Данные и схемы брать из таблицы 38 согласно номеру группы и вашему варианту.

Таблица 38

Задача 39. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА С ДИСКОМ (СЛОЖНАЯ ГЕОМЕТРИЯ) (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механизм изображен в произвольном положении, определяемом некоторым углом φ . Задана угловая скорость одного из звеньев или скорость центра диска. Длины звеньев даны в сантиметрах, радиус диска равен 5 см. Заданы координаты шарнира С и ордината оси диска в осях с началом в шарнире О . Диск катится без проскальзывания. Найти угловые скорости всех звеньев механизма и скорость центра диска (если она не задана) при φ = φ 0 .

Данные и схемы брать из таблицы 39 согласно номеру группы и вашему варианту.

Таблица 39

Задача 40. УГЛОВЫЕ УСКОРЕНИЯ ЗВЕНЬЕВ ТРЕХЗВЕННОГО МЕХАНИЗМА (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма задана постоянная угловая скорость звена ОА . Длины звеньев даны в сантиметрах. Звенья, направления которых не указано, принимать вертикальными или горизонтальными. Ползун B движется горизонтально, ползун С – вертикально. Найти угловые ускорения звеньев механизма.

Данные и схемы брать из таблицы 40 согласно номеру группы и вашему варианту.

Таблица 40

Задача 41. УГЛОВЫЕ СКОРОСТИ ЗВЕНЬЕВ МЕХАНИЗМА С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

В указанном положении механизма заданы угловые скорости двух его звеньев. Длины звеньев даны в сантиметрах. Стержни, направление которых не указано, считать вертикальными или горизонтальными. Найти угловые скорости всех звеньев механизма.

Данные и схемы брать из таблицы 41 согласно номеру группы и вашему варианту.

Таблица 41

Задача 42. УРАВНЕНИЕ ТРЕХ УГЛОВЫХ СКОРОСТЕЙ

Подобрать длины звеньев (в см) шарнирного четырехзвенника так, чтобы в некоторый момент движения угловые скорости его звеньев были бы равны заданным. Положение опорных шарниров четырехзвенника известно. Расстояния даны в см, угловые скорости - в рад/с .

Данные и схемы брать из таблицы 42 согласно номеру группы и вашему варианту.

Таблица 42

Задача 43. УРАВНЕНИЕ ТРЕХ УГЛОВЫХ УСКОРЕНИЙ

Многозвенный механизм приводится в движение кривошипом ОА или ВС , вращающимся с известной угловой скоростью и известным угловым ускорением. Найти угловые скорости и угловые ускорения звеньев механизма. Длины звеньев даны в см, угловые скорости в рад/с, угловые ускорения – в рад/с 2 . Стержни, положение которых не определено углом, вертикальны или горизонтальны.

Данные и схемы брать из таблицы 43 согласно номеру группы и вашему варианту.

Таблица 43

СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ

Задача 44. СКОРОСТЬ И УСКОРЕНИЕ ТОЧКИ ТЕЛА ПРИ ВРАЩАТЕЛЬНОМ ДВИЖЕНИИ (ТЕКСТОВЫЕ ЗАДАЧИ)

Данные и схемы брать из таблицы 44 согласно номеру группы и вашему варианту.

Таблица 44

Задача 45. СКОРОСТЬ И УСКОРЕНИЕ ТОЧКИ ТЕЛА ПРИ ВРАЩАТЕЛЬНОМ ДВИЖЕНИИ

Тело равноускоренно вращается из состояния покоя с угловым ускорением ε . Найти скорость и ускорение точки тела с радиусом-вектором r через время t после начала движения.

Данные и схемы брать из таблицы 45 согласно номеру группы и вашему варианту.

Таблица 45

Задача 46. ПЕРЕДАЧА ВРАЩЕНИЙ

Данные и схемы брать из таблицы 46 согласно номеру группы и вашему варианту.

Таблица 46

Задача 47. СФЕРИЧЕСКОЕ ДВИЖЕНИЕ

Твердое тело совершает сферическое движение, заданном углами Эйлера. Найти скорость и ускорение точки, положение которой дано относительно подвижных осей координат.

Данные и схемы брать из таблицы 47 согласно номеру группы и вашему варианту.

Таблица 47

Задача 48. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ В ПЛОСКОСТИ

Геометрическая фигура вращается вокруг оси, перпендикулярной ее плоскости. По каналу, расположенному на фигуре, движется точка М по известному закону σ (t ). Найти абсолютную скорость и абсолютное ускорение точки при t = t 1 . Даны функция σ (t ), закон вращения фигуры φ e (t ω e ), время t 1 и размеры фигуры. ВМ или АМ – длина отрезка прямой или дуги окружности.

Данные и схемы брать из таблицы 48 согласно номеру группы и вашему варианту.

Таблица 48

Задача 49. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ В ПРОСТРАНСТВЕ

Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка М по известному закону AM (t ) или BM (t ) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t 1 . Даны закон вращения фигуры φ e (t ) (или постоянная угловая скорость ω e ), время t 1 и размеры фигуры. Углы даны в рад, размеры – в см. Длина ВМ или АМ – длина отрезка прямой или дуги окружности, АВ – длина отрезка прямой.

Данные и схемы брать из таблицы 49 согласно номеру группы и вашему варианту.

Таблица 49

Задача 50. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ. ЧЕТЫРЕХЗВЕННИК

Плоский шарнирно-стержневой механизм приводится в движение кривошипом ОА , который вращается против часовой стрелки с постоянной угловой скоростью ω . Вдоль стержня А движется точка М по закону AM = σ (t ) или BM = σ (t ). Положение механизма при t = t 1 указано на рисунке. Все размеры даны в см. Стержни, положение которых не задано углом, горизонтальны или вертикальны. Найти абсолютную скорость и абсолютное ускорение точки М в этот момент.

Данные и схемы брать из таблицы 50 согласно номеру группы и вашему варианту.

Таблица 50

Задача 51. СЛОЖНОЕ ДВИЖЕНИЕ ТОЧКИ. МЕХАНИЗМ С МУФТОЙ

Плоский механизм с одной степенью свободы состоит из шарнирно соединенных стержней и муфты, скользящей по направляющему стержню и шарнирно закрепленной на другом стержне или вращающейся на неподвижном шарнире. Кривошип ОА вращается против часовой стрелки с постоянной угловой скоростью ω OA . Горизонтальные и вертикальные размеры на рисунках даны для неподвижных шарниров и для линий движения ползунов (в см ). Найти скорость муфты D (или E ) относительно направляющего стержня (в см /с).

Данные и схемы брать из таблицы 51 согласно номеру группы и вашему варианту.

Таблица 51

Задача 52. ЗАДАЧИ ПО КИНЕМАТИКЕ ПОВЫШЕННОЙ СЛОЖНОСТИ

Данные и схемы брать из таблицы 52 согласно вашему варианту.

Таблица 52

ДИНАМИКА

Задача 53. ДИНАМИКА ТОЧКИ

Данные и схемы брать из таблицы 53 согласно вашему варианту.

Таблица 53

Задача 54. ДИНАМИКА ТОЧКИ (ТЕКСТОВЫЕ ЗАДАЧИ)

Данные и схемы брать из таблицы 54 согласно вашему варианту.

Таблица 5 4

Задача 55. ОСНОВНЫЕ ТЕОРЕМЫ ДИНАМИКИ ТОЧКИ

На прямолинейном участке пути шайба разгоняется в течение времени t = t 1 переменной силой F , направленной под углом γ к перемещению. На криволинейном участке оси, изогнутой по дуге окружности радиуса r (геометрический центр в точке О ), действует постоянная сила сопротивления F fr . Участки оси сопрягаются в точке В без излома. Вся траектория находится в вертикальной плоскости. Сила F дана в Н. В зависимости от варианта найти расстояние b , скорость v A или силу F fr .

Данные и схемы брать из таблицы 55 согласно номеру группы и вашему варианту.

Таблица 5 5

Задача 56. ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС

Механизм, состоящий из груза А , блока В (больший радиус R , меньший r ) и цилиндра радиуса R c , установлен на призме D , находящейся на горизонтальной плоскости. Трение между призмой и плоскостью отсутствует. Груз А получает перемещение S =1 м относительно призмы вдоль ее поверхности влево или (в тех вариантах, где он висит) по вертикали вниз. Куда и на какое расстояние переместится призма?

Данные и схемы брать из таблицы 56 согласно номеру группы и вашему варианту.

Таблица 5 6

Задача 57 . ДИНАМИЧЕСКИЕ РЕАКЦИИ ВАЛА

На оси, вращающейся в подшипниках под действием момента, закреплен ротор, состоящий из цилиндра и жесткого невесомого стержня с точечной массой на конце. Ось цилиндра составляет малый угол с осью вращения. Найти динамические составляющие реакций подшипников.

Данные и схемы брать из таблицы 57 согласно номеру группы и вашему варианту.

Таблица 57

Задача 58. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ СИСТЕМЫ. ПРИВЕДЕННЫЕ МАССЫ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механическая система, состоящая из пяти тел A , B , C , D , E , движется под действием внешних сил. Заданы радиусы цилиндров и блоков. Радиусы инерции даны для блоков, цилиндры считать однородными. Горизонтальный стержень, находящийся в зацеплении с блоками, считать невесомым. Массы даны в килограммах, радиусы - в сантиметрах. Вычислить приведенную массу системы μ в формуле T = μ , где v A - скорость груза A .

Данные и схемы брать из таблицы 58 согласно номеру группы и вашему варианту.

Таблица 5 8

Задача 59. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ С УЧЕТОМ ТРЕНИЯ (1)

Механическая система с одной степенью свободы состоит из тел совершающих плоское движение. Под действием сил тяжести система из состояния покоя приходит в движение. Какую скорость приобретет груз А , переместившись (вверх или вниз) на S =1 м? Качение цилиндра (или блока) происходит без проскальзывания с коэффициентом трения качения δ . Коэффициент трения скольжения f . Радиусы инерции i C , i D . Внешние радиусы R C , R D , внутренние r C , r D .

Данные и схемы брать из таблицы 59 согласно номеру группы и вашему варианту.

Таблица 5 9

Задача 60. ДИНАМИЧЕСКИЙ РАСЧЕТ МЕХАНИЗМА С НЕИЗВЕСТНЫМ ПАРАМЕТРОМ. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ С УЧЕТОМ ТРЕНИЯ (2)

Механическая система, состоящая из четырех тел A , B , C , D и пружины, под действием внешних сил приходит в движение из состояния покоя. Один из параметров системы (жесткость пружины с или момент трения M fr , B на оси B ) неизвестен. Учитывается трение скольжения с коэффициентом f и трение качения с коэффициентом δ fr . Заданы радиусы цилиндра и блока. Радиусы инерции даны для блоков, цилиндры считать однородными.

Данные и схемы брать из таблицы 60 согласно номеру группы и вашему варианту.

Таблица 60

Задача 61. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ С УЧЕТОМ ТРЕНИЯ (3)

Механизм, состоящий из груза А , блока В (больший радиус R , меньший r ) и цилиндра радиуса R c , установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Между грузомА и призмой имеется трение (кроме тех вариантов, где груз висит), качение цилиндра (блока) происходит без проскальзывания. Коэффициент трения скольжения груза о плоскость f , коэффициент трения качения цилиндра (блока) δ . Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А , переместившись на расстояние S A ?

Данные и схемы брать из таблицы 61 согласно номеру группы и вашему варианту.

Таблица 61

Задача 62. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ СИСТЕМЫ БЕЗ УЧЕТА ТРЕНИЯ

Механизм, состоящий из груза А , блока В (больший радиус R , меньший r ) и цилиндра радиуса R c , установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела параллельны плоскостям. Какую скорость развил груз А , переместившись на расстояние S A ?

Данные и схемы брать из таблицы 62 согласно номеру группы и вашему варианту.

Таблица 62

АНАЛИТИЧЕСКАЯ МЕХАНИКА

Задача 63. ВЫЧИСЛЕНИЕ ЧИСЛА СТЕПЕНЕЙ СВОБОДЫ МЕХАНИЧЕСКОЙ СИСТЕМЫ

Определить число степеней свободы системы по формуле W =3Д-2Ш-С.

Данные и схемы брать из таблицы 63 согласно номеру группы и вашему варианту.

Таблица 63

Задача 64. ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ ДЛЯ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ

Плоский шарнирно-стержневой механизм с одной степенью свободы движется в вертикальной плоскости под действием сил тяжести и момента М , который вращает звено ОА с постоянной угловой скоростью ω OA . В узлах А , В, С и в центре Е звена АВ расположены материальные точки. На осях неподвижных шарниров О и D имеется трение с постоянным моментом M fr . Сила сопротивления движению ползуна – F fr , остальные связи идеальные. Пренебрегая массами стержней, определить величину момента М .

Данные и схемы брать из таблицы 64 согласно номеру группы и вашему варианту.

Таблица 64

Задача 65. ПРИНЦИП ВОЗМОЖНЫХ СКОРОСТЕЙ (ОПРЕДЕЛЕНИЕ РЕАКЦИЙ ОПОР)

Система с идеальными стационарными связями, состоящая из четырех шарнирно соединенных однородных стержней, расположенных в вертикальной плоскости, находится в равновесии под действием силы F и момента М . Учитывая погонный вес стержней ρ , определить реакции опор (в Н).

Данные и схемы брать из таблицы 65 согласно номеру группы и вашему варианту.

Таблица 65

Задача 66. ПРИНЦИП ВОЗМОЖНЫХ СКОРОСТЕЙ. МЕХАНИЗМ С ДИСКОМ (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механизм с идеальными стационарными связями находится в равновесии под действием силы F и моментов M 1 и M 2 . Длины звеньев даны в сантиметрах. Стержни, направление которых не указано, считать горизонтальными или вертикальными. Диск касается горизонтальной поверхности без проскальзывания. Найти величину F .

Данные и схемы брать из таблицы 66 согласно номеру группы и вашему варианту.

Таблица 66

Задача 67 . ДИНАМИКА КУЛИСЫ

Получить уравнение движения кулисного механизма. Найти значение углового ускорения при t =0.

Данные и схемы брать из таблицы 67 согласно номеру группы и вашему варианту.

Таблица 67

Задача 68. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ДВЕ СТЕПЕНИ СВОБОДЫ) (ОТВЕТЫ В ЦЕЛЫХ ЧИСЛАХ)

Механическая система из двух однородных цилиндров 1 и 2 и бруска 3 с идеальными стационарными связями имеет две степени свободы и движется под действием силы F . Трением пренебречь. Массы даны в килограммах, сила – в ньютонах. Найти ускорение бруска, скользящего по гладкой поверхности.

Данные и схемы брать из таблицы 68 согласно номеру группы и вашему варианту.

Таблица 68

Задача 69. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ДВЕ СТЕПЕНИ СВОБОДЫ) (1)

Механическая система с идеальными стационарными связями имеет две степени свободы и движется под действием сил тяжести. Три элемента механизма наделены массами, кратными некоторой массе m . Трением пренебречь. Подвижные и неподвижные блоки считать однородными цилиндрами. Найти ускорение груза А или центра цилиндра А .

Данные и схемы брать из таблицы 69 согласно номеру группы и вашему варианту.

Таблица 69

Задача 70. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ДВЕ СТЕПЕНИ СВОБОДЫ) (2)

Механическая система с идеальными стационарными связями имеет две степени свободы и состоит из пяти тел. Блок (или однородный цилиндр) D катится без проскальзывания по неподвижной горизонтальной плоскости или по подвижной тележке массой . Массой колес тележки пренебречь. Грузы А , В и ось однородного цилиндра Е перемещаются вертикально под действием сил тяжести. Радиусы инерции

Задача 71. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА ДЛЯ КОНСЕРВАТИВНЫХ СИСТЕМ

Консервативная механическая система с идеальными стационарными связями имеет две степени свободы и представляет собой механизм, состоящий из груза А , блока В (больший радиус R , меньший r , радиус инерции i B ) и цилиндра С радиусом R C . Механизм установлен на призме D , закрепленной на осях двух однородных цилиндров Е . К призме приложена постоянная по величине горизонтальная сила F . Качение цилиндра С (блока В ) и цилиндров Е происходит без проскальзывания. Трением качения и скольжения пренебречь. Используя уравнение Лагранжа 2-го рода для консервативных систем, найти ускорение призмы.

Данные и схемы брать из таблицы 71 согласно номеру группы и вашему варианту.

Таблица 71

Задача 72. УРАВНЕНИЕ ЛАГРАНЖА 2-ГО РОДА (ЭКЗАМЕНАЦИОННЫЕ ЗАДАЧИ)

Данные и схемы брать из таблицы 72 согласно номеру группы и вашему варианту.

.

Данные и схемы брать из таблицы 73 согласно номеру группы и вашему варианту.

Таблица 73

Задача 74. ФУНКЦИЯ ГАМИЛЬТОНА

Найти функцию Гамильтона механической системы с двумя степенями свободы по известной функции Лагранжа.

Данные и схемы брать из таблицы 74 согласно номеру группы и вашему варианту.

Таблица 74

Задача 75. ФУНКЦИЯ ГАМИЛЬТОНА

Получить уравнения движения в форме Гамильтона для консервативной системы с одной степенью свободы.

Данные и схемы брать из таблицы 75 согласно номеру группы и вашему варианту.

Таблица 75

ТЕОРИЯ КОЛЕБАНИЙ

Задача 76. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (1)

Найти собственную частоту системы. В ответах даны инерционные коэффициенты и частота ω . Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 76 согласно номеру группы и вашему варианту.

Таблица 76

Задача 77. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (2). ЧАСТОТНЫЙ АНАЛИЗ

Найти жесткость одной из пружин, при которой разность собственных частот системы будет минимальна. В ответах даны инерционные коэффициенты и две собственные частоты системы. Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 77 согласно номеру группы и вашему варианту.

Таблица 77

Задача 78. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (3). ПРЕДЕЛЬНЫЕ ЧАСТОТЫ

В ответах даны инерционные коэффициенты, две собственные частоты ω k и три предельные частоты ω limk . Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 78 согласно номеру группы и вашему варианту.

Таблица 78

Задача 79. АНАЛИЗ КОЛЕБАНИЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ (4). ЦИЛИНДРЫ

Механическая система с двумя степенями свободы состоит из двух однородных цилиндров и нескольких линейно однородных пружин с одинаковой жесткость с . Цилиндры катаются без проскальзывания и сопротивления по горизонтальной поверхности, пружины в положении равновесия не имеют предварительного напряжения. Массой пружин пренебречь. Определить частоты собственных колебаний системы. В ответах даны инерционные коэффициенты и частота ω . Обобщенные координаты x и s – линейные перемещения точек ободов неподвижных цилиндров.

Данные и схемы брать из таблицы 79 согласно номеру группы и вашему варианту.

Таблица 79

Задача 80. КОЛЕБАНИЯ УЗЛА ФЕРМЫ

В одном из шарниров плоской фермы (на рисунке выделен ) находится точка с массой m . Стержни фермы упругие. Жесткость стержней

Студенты-технари, начиная с первого курса, получают от преподавателей сложное и важное задание на расчетно-графическую работу. Выполнение ргр требует определенных знаний и навыков, внимательности и усидчивости, а также достаточного количества времени, которого у современного студента не так уж и много.

Расчетно-графическая работа

Если невыполнение обычной контрольной работы преподаватель может простить студенту, то отсутствие решения ргр может негативно отразиться на успеваемости и существенно испортить впечатление об учащемся. Именно поэтому, выполнение расчетно-графической работы является обязательным и очень важным абсолютно для каждого. Кто-то кропотливо, проводя ночи с учебниками и тетрадями, выполняет все сам, – верно или нет, – узнает уже по факту. Кто-то обращается к студентам старших курсов за помощью, что, кстати, тоже рискованно, ведь нет никакой гарантии, что решение расчетно-графической работы предоставят правильное, без каких-либо недочетов. А кто-то выбирает более безопасный и максимально выгодный путь решения данного вопроса – заказывает работу у профессионалов.

Заказать ргр

Сегодня в Сети можно увидеть массу объявлений типа «ргр недорого» или «термех быстро и качественно», но где гарантия, что это не просто слова? Переходя на тот или иной сайт необходимо отправлять коды подтверждения, что сегодня очень рискованно. Некоторые авторы и агентства требуют 100% предоплаты, а в результате вы получаете «кота в мешке» и минимум гарантий, что работу исправят в кротчайшие сроки при возникновении претензий преподавателя.

Безопасным и надежным помощником современных студентов выступает сайт «ВсеСдал!». Доказательством тому служат тысячи заказов ежемесячно по различным предметам – от истории Древнего Египта до технической механики. Исполнители, зарегистрированные на сайте, проходят жесткий отбор, что позволяет оградить вас от недобросовестных и некомпетентных авторов.

Если вам нужна курсовая по экономике, эссе по истории или чертеж по геометрии – вы смело можете разместить заказ на сайте. Всего несколько часов и исполнитель, который выполнит вашу работу в срок, найдется.

Цены на сайте в 2-3 раза меньше, чем на других ресурсах. Обусловлено это тем, что вы напрямую общаетесь с автором, не переплачивая менеджерам, которые работают в агентствах. Общение напрямую дает еще ряд преимуществ:
Не возникает недопонимание по поводу задания – вы сами детально рассказываете, что и как должно выглядеть.
Если у исполнителя возникают вопросы или у вас дополнительные требования, времени на это уходит как минимум в 2-3 раза меньше, ведь общение через третьих лиц исключается.
Если вам требуется консультация по вопросам, касающихся работы, непосредственно тот, кто делал для вас задание, проконсультирует в кротчайшие сроки в режиме онлайн.
И, наконец, если работа автора вас полностью устроила, вы можете и дальше продолжать с ним выгодное сотрудничество – как постоянный клиент можете договориться о скидках на следующие заказы.

На каждый вид работы предусмотрен гарантийный срок, только по истечении которого исполнитель получает денежные средства. Если по какой-то причине автор не справится с работой, что бывает достаточно редко, 100% оплаты возвращаются на ваш счет.

С биржей готовых работ «ВсеСдал!» учеба больше не в тягость, а хвосты и неуды останутся в прошлом!

Исходные данные.

общая схема замкнутого теодолитного хода, на которой даны измеренные правые по ходу углы и горизонтальные проложения линий (рис.30);

– исходный дирекционный угол линии от пт. 103 – пт. 102 вычислить индивидуально каждому по формуле (17) в соответствии с порядковым номером по журналу преподавателя и номером группы студента., а координаты исходного пункта пт. 103 вычисляют по формуле (16) в соответствии только с номером группы.

Плановое обоснование в виде замкнутого теодолитного хода, включая пункт 102 и точки съемочного обоснования 1-2-3 (рис. 30).

Х 103 = 135,61 + 100,00 (N гр 10) ,
Y 103 = 933,70 + 100,00 ( N гр 10). (1 6 )
Дирекционный угол для стороны 103 – 102 рассчитывается по формуле:

= 334 0 06 + N 0 вар + N гр, (17 )

Порядок выполнения работы

1. Вычисление координат точек планового съемочного обосн о ва ния (теодолитного хода).

Выписать в ведомость вычисления координат со схемы (рис. 30) горизонтальные утлы и длины сторон теодолитного хода. Вычислить значения координат исходного пункта и дирекционного угла исходной стороны по данным, приведенным соответственно в формулах (16) и (17). Для нулевого варианта значение дирекционного угла равно 334°06′.

1.1. Произвести увязку измеренных углов, для этого подсчитать угловую невязку и распределить угловую погрешность по углам замкнутого полигона:

б) определить теоретическую сумму углов замкнутого полигона по формуле

теор =180 0 (n-2) (18)
где nчисло углов теодолитного хода;

в) найти угловую невязку по формуле

f = пр теор (19)

г) вычислить допустимую угловую невязку по формуле

f доп = 1 n (20)
где 1′ = 2 t , t = 30 точность теодолита 2Т30;

д) если невязка в углах не превышает допустимой величины, вы-

численной по формуле, её распределить с обратным знаком поровну во все углы полигона. Поправки выписать с их знаками над значениями соответствующих измеренных углов. Сумма поправок должна равняться невязке с обратным знаком. Учитывая поправки, вычислить исправленные углы. Их сумма должна быть равна

теоретической сумме углов:

испр = теор

1.2. Вычислить дирекционные углы и румбы замкнутого теодо-литного хода. По начальному дирекционному углу 103-102 и исправ-ленным внутренним углам найти дирекционные углы всех остальных сторон хода. Подсчет ведут последовательно с включением всех исправленных углов хода по формуле

посл = пред + 180 0 – правый (21)

Дирекционный угол последующей линии посл , равен дире к цион- ному углу предыдущей пред плюс 180° и минус внутре н ний, правый

по ходу угол правый . Если пред + 180 0 окажется меньше угла то к этой сумме прибавляют 360°.

Контролем правильности вычисления дирекционных углов является получение исходного (начального) дирекционного угла.

1.3. По найденным дирекционным углам найти румбы сторон замкнутого полигона.

Между румбами r , расположенными в разных четвертях, и ди-
рекционными углами линий существует зависимость, которая показана на рисунках 3а, 3б и дана в таблице 9 (см. стр. 17).

В качестве исходных данных привязочного хода служат: дирекционный угол стороны 103-102, её длина – 250,00 м и измеренный левый угол между исходной и стороной полигона 102 -1 – 124 0 50 1 . Для изм е реных левых углов дирекционный угол последующей линии р а вен:

посл = пред 180 0 + левый . (22)

В нашем нулевом варианте получим:

102-1 = 103 -102 180 0 + левый 103 -102 – 1 ,

102-1 = 334 0 06 1 – 180 0 +124 0 50 1 = 278 0 56 1 .

1.4. Вычислить приращения координат. Приращения координат X и Y найти по формулам:

X = d * cos r; (2 3 )

Y = d * sin r, (2 4 )

где d – горизонтальное положение стороны теодолитного хода;

r румб стороны.

Результаты вычислений записать в ведомость координат (табл. 18), округлив до 0,01 м. Знаки приращений координат выставить по на-званию r , в зависимости от того, в какой четверти он находится.

1.5. Увязка приращений координат.

Теоретическая сумма приращений координат замкнутого хода раздельно по каждой из осей Х и Y равна нулю:

X теор = 0; (25)

Y теор = 0.

Однако вследствие неизбежных погрешностей при измерении углов и длин линий при полевых съемках сумма приращений координат равна не нулю, а некоторым величинам f X и f Y погрешностям (невязкам) в приращении координат:

X пр = f X ;

Y пр = f Y . (26)

Из-за погрешностей f X и f Y замкнутый полигон, построенный в системе координат, получается разомкнутым на величину f абс , назы-
ваемую абсолютной линейной погрешностью в периметре полигона,
вычисляемую по формуле

f абс = ( f 2 X + f 2 Y ) (27 )

Чтобы оценить точность линейных и угловых измерений по теодо-литному ходу, следует вычислить относительную погрешность:

f отн = f абс / P = 1/(P / f абс ) (28)

Необходимо полученную относительную погрешность сравнить с допустимой.

f отн 1/2000.

При допустимой погрешности вычисленные приращения коорди-нат исправить (увязать). При этом найти поправки к приращениям координат по осям X , Y . Поправки ввести в вычисленные приращения пропорционально длинам сторон с обратным знаком. Поправки вы-писать над соответствующими приращениями. Значения вычислен-ных поправок округлить до сантиметров. Сумма поправок в прира-щениях по каждой оси должна равняться невязке по соответствую-щей оси, взятой с обратным знаком. Для вычисления поправок поль-зуются формулами:

X = – f X d i / P ; X = – f Y d i / P ; (29)

где X , X поправки в приращения координат; f X , f Y – невязки по осям X , Y ; Р периметр полигона; d i – горизонтальное проложение линии.

Найденные поправки прибавить к вычисленным приращениям координат со знаком, обратным знаку невязки, и получить исправ-ленные приращения.

X испр = X i + Xi ; Y испр = Y i + Y i . (30)
Сумма исправленных приращений координат в замкнутом поли-
гоне должна быть равна 0:

X испр = 0 ; Y испр = 0 ;

1.6. Имея координату пт. 102, последовательно найти координаты остальных точек полигона.

В результате последовательного вычисления координат всех то-чек замкнутого полигона должны получиться координаты пт. 102 по формулам:

X посл = X пред + X испр ; Y посл = Y пред + Y испр (31)

Контроль вычислений – получение координат X и Y исходной точки пт. 102.

Пример вычисления координат точек съёмочного обоснования приведен в ведомости вычисления координат (табл. 18).

2. Создание высотного обоснования .

Высотное съемочное обоснование создано проложением хода технического нивелирования по точкам теодолитного хода.

Техническое нивелирование было выполнено методом из середины, результаты измерений по красной и черной сторонам реек записаны в журнале нивелирования (табл. 19), в котором производятся все после-дующие вычисления высот точек планового обоснования.

Высота исходного пункта каждым студентом вычисляется индивидуально с учетом порядкового номера по журналу преподавателя по формуле:

H пт.102 = 100,000*(N гр – 10) + N вар + N гр , (32)

где N вар номер варианта по журналу преподавателя, м; N гр – номер группы 11, 12, 13, …, мм.

Например (группа 12, номер в журнале 5):

H пт.102 = 100,000*2 + 5 +12 = 20 5 ,017 м

Таблица 19

Журнал технического нивелирования

№ стан-ции №точек Отсчет по рейке Разность отсчетов Среднее превышение h, мм Исправ-ленное превышение h, мм Высота Н,м
Задняя Передняя
102 2958 205,017
1 7818 +2717 -1
1 0241 +2719 +2718 +2717
5099 207,734
1 1940
2 .6800 +1821 -2
2 0119 +1825 +1823 +1821
4975 209,555
2 0682
3 ^ 5546 -2261 -2
3 2943 -2257 -2259 -2261
7803 207,294
3 0131
4 4987 -2273 -2
2404 -2277 -2275 -2277
102 7264 205,017
з 30862 п 30848 14 h пр = + 7 h испр = 0
h теор = 0
з – п = 14мм f h = +7
f h доп = 50 1,2 = 55мм

При выполнении технического нивелирования допустимую не-вязку можно вычислить по формуле f h доп = 50 L , где L длина хода, км.

3. Составление плана .

3.1. Построение координатной сетки .

Составить план в масштабе 1:2000. На листе ватмана формата АЗ построить координатную сетку со сторонами квадратов 10 см так, чтобы полигон разместился симметрично относительно краёв листа бумаги. Контроль за правильностью построения сетки координат осуществляется путём измерения сторон и диагоналей квадратов и сравнении результатов с истинными. Допускаются расхождения в пределах 0,2 мм. Вычертить сетку тонкими линиями остро отточенным карандашом. Подписать выхода линий координатной сетки кратно 200м.

3.2. Нанесение точек съемочного обоснования на план.

Все точки хода последовательно нанести по координатам с помо-щью масштабной линейки и измерителя. Контроль за пр а вильностью нанесения точек по координатам осуществляется п у тём сравнения сто рон на плане с соответствующими длинами горизонтальных проложе ний (табл. 18). Расхождения не должны превышать 0,3 мм. Нанесенные точки оформить наколом и круглешком вокруг него диаметром 2 мм, подписать в числителе номер точки, в знаменателе – высоту с округлением до 0,01 м.

3.3. Определение расстояний и превышений в треугол ь нике при угловой засечке с базисной линии.

Расстояния S 2 – 4 и S 3 – 4 определяются из соотношений сторон и синусов противолежащих углов:

sin (111 0) / S 2-3 = sin (26 0) / S 2-4 , отсюда S 2-4 = S 2-3 * sin (26 0) / sin (111 0),

аналогично для S 3-4 = S 2-3 * sin (43 0) / sin (111 0). В нулевом варианте стороны соответственно равны: S 2 – 4 = 152,59, S 3 – 4 = 237,38

Измеренный угол на точке 2 определяется для каждого студе н та по формуле 43 0 + 10 * N , где N – порядковый номер в журнале преподавателя.

Превышения h 2-4 и h 3-4 (Рис. 31) определяются по формуле:

т.к. измерения здесь на «землю» (табл.20), а для точек уреза воды, где наблюдения велись по рейке на уровень высоты инструмента

Для направления 2-4 в данном примере h 2-4 = -1,93 м, а для направления 3-4 h 3-4 = + 0,36 м.

Контролем вычисления будет допустимое расхождение (10 см) отметок (высот) точки 4, полученные раздельно от опорных точек 2 и 3. В этом примере Н 4 = 101,61 м по стороне 2-4 и Н 4 = 101,64 м по стороне 3-4.

Контролем вычисления отметок уреза воды озера также является допустимое расхождение значений их высот, т.к. отметки

(высоты) уреза воды у озера должны теоретически быть равны.

3.4. Нанесение ситу а ции на план .

Способ построения контуров на плане соответствует способу их съёмки на местности (рис. 32, 33, 34, 35). При нанесении ситуации полярным способом пользуются геодезическим транспортиром для откладывания угла, например, от опорного направления 102-1 и масштабной линейкой и измерителем для откладывания линии d от станции 102 до пикета 2. План оформить в карандаше, руководствуясь при черчении «Условными знаками для выпуска планов масштаба 1:2000», с соблюдением их размеров и начертания.

СТАНЦИЯ 102 Табл и ца 20

Наведение на высоту инстр у мента 1,35 м

Откладывая углы от опорных линий 2-1 и 3-2 получаем в пересечении отложенных направлений местоположение объекта съёмки.

Таб лица 21

Высота инструмента i . Наведение на основание пре д мета.

Точка стоя н ки То ч ка н а вед. Угол гориз Точка стоя н ки То ч ка н а вед Угол гориз Угол
Ст. 1 i = 1,45 Ст.2 0°00′ Ст.2 i =1,40 Ст.3 0°00′
Дер е во 14 ° ЗО’ Скв 43 ° ЗО’ 1 ° 15
Ст. 2 i = 1,35 Ст.1 0°00′ Ст. 3 i =1,40 Ст.2 0°00′
Дер е во 31 7 °00′ Скв 334 °00 1 5′

3.5 . Интерполирование г о ризонталей.

Соединить точки планово-высотного обоснования, точку 4 и точки уреза воды при помощи линейки и простого карандаша на плане согласно схеме (рис.36),по полученным направлениям выполнить интерполирование горизонталей графическим методом. Для этого построить палетку на кальке (рис.37), проведя 5-7 параллельных линий через 2 см. Необходимо правильно оцифровать линии палетки снизу вверх, для этого из журнала нивелирования выбирается минимальное значение высоты (в данном примере урез воды 99,8). Следовательно, оцифровка палетки снизу начнётся с отметки 99,00, далее 100,00; затем 101,00 и так далее с нарастающим итогом через 1,00 м.

Палетку накладывают на план так, чтобы точка (в примере точка уреза озера) заняла на палетке положение, соответствующее своей высоте 99,8, и в таком положении палетку удерживают в этой точке иглой измерителя. Затем поворачивают палетку вокруг точки озера так, чтобы точка съёмочного обоснования 1 заняла на палетке положение, соответствующее своей высоте – 102,7. Перекалывая точки пересечения линии «1 – озеро» на плане с линиями на палетке, получают точки, через которые и должны пройти соответствуюшие горизонтали 100, 101, 102. Таким образом поступают по всем линиям интерполяции. Затем необходимо провести горизонтали, соединяя смежные точки с одинаковыми высотами плавными линиями. Горизонтали, кратные 5 м, необходимо утолстить и оцифровать. Бергштрихами показать направление скатов.

3.6 . Вычисление площадей контуров угодий аналитическим

спо собом и планиме т ром.

Определить общую площадь полигона, пользуясь математическими формулами, и принять ее за площадь теоретическую.

2 P = y k (x k -1 x k +1 ) (33)

Удвоенная площадь полигона равна сумме произ ведений ка ж дой ординаты на разность абсцисс предыдущей и последующей т о чек или равносильно можно вычислить по другой форм у ле:

2 P = x k (y k + 1 y k -1 ) (34)

У двоенная площадь полигона равна сумме произведений каждой абсциссы на разность ординат последующей и предыдущей точек . Произведений столько, сколько вершин в полигоне.

Практическую площадь полигона измерить планиметром, опре-делив площадь угодий, находящихся внутри полигона, практическую площадь сравнить с теоретической и определить невязку, невязку оценить, т.е. сравнить ее с допустимой. Если невязка окажется допус-тимой, распределить ее на площади угодий и увязать их. Результаты свести в табл. 22.

На рис. 38 приведен образец оформления плана, на котором в лю-бом свободном месте необходимо изобразить в виде таблицы экспли-кацию угодий, на ней отобразить название контуров, имеющихся на плане, площади всех имеющихся угодий и условные знаки, которыми показаны угодья на плане.

Таблица 22

Ведомость вычисления площадей.

Цена деления планиметра 0,00098

№ контура Название контура Отсчет по основномумеханизму Разность отсчетов Средняя разность отсчетов Площадь, га Поправка Увязаннаяплощадь Площадь вкрапленногоконтура Площадь угодий, га
1 Вырублен-ный лес 7215 711713
7926 712 0,71 – 0,01 0,70 0,70
8639
2 Луг 0516 368370
0884 369 0,37 0,37 0,37
1254
3 Озеро 2584 193195
2777 194 0,19 0,19 0,19
2972
4 Выгон сдорогой 5761 18311829
7592 1830 1.83. – 0,01, 1.82 0,18 1,64
9421 _ .
5 Пашня сполевым 2711 53455334 .
8056 5334 5,34 -0,02 5,32 0,02 5,30
3390
теор = 8,40
практ = 8,44
f прак = 0,04
f доп =P/200 f доп =0,042

4. Решение инженерных задач по топографическому плану .

4 . 1 Построение продольного профиля.

В результате проведенных действий, описанных выше, на листе ватмана мы получим план в масштабе 1:2000, на котором нужно за-проектировать ось водопровода, прокладывая её от пункта триангу-ляции 102 в направлении п. 2 с одним углом поворота в точке А, как показано на рис. 38.

На миллиметровой бумаге формата А4 построить продольный профиль в масштабах: горизонтальный – 1:2000, вертикальный -1:200, как показано на рис. 39. Увеличенный рисунок 39 дан в приложении №1.

Рис. 38. Образец оформления плана и проектная линия оси канала

– вычертить сетку профиля (рис. 39), где предусмотреть графы для внесения в них полевых и проектных данных;

– в заданном масштабе отложить пикеты, находящиеся друг от друга на расстоянии 100 м. Заполнить графы пикетов и расстояний. Записываются расстояния между соседними точками;

– с плана снимаются и выписываются в графу «отметки земли»: высоты точки 2 и пт. 102, определяются высоты пикетов, располо-женных между горизонталями, как показано на рис. 38, и отметки го-ризонталей;

– от линии условного горизонта в заданном вертикальном мас-штабе отложить высоты всех точек и соединить их между собой.

Определение высоты пикета между горизонталями.

Пусть высоты двух соседних горизонталей равны И а и Н н . Требу-ется определить высоту Н р точки Р, лежащей между этими горизон-талями (см.рис. 11 стр. 24).

Рис. 39. Образец оформления продольного профиля.

Через точку Р проводят прямую, примерно перпендикулярную этим горизонталям, до пересечения с ними в точках а и в. Измеряют отрезки на плане ав, аР, вР (см. Рис 11 на стр 24).

Высоту точки Р находят по формуле (9).

4.2. Проектирование канала.

Нанесение проектной линии водопровода на профиль. При про-ектировании рекомендуется придерживаться предлагаемой последовательности выполнения работ и заданных параметров:

  • глубина водопровода должна быть в пределах 0,40-1,50 м;
  • ширина водопровода а = 1,0 м;
  • уклоны по дну водопровода выдерживать в пределах 0,01-0,005.

Определить по профилю проектные высоты концов участка. По ним рассчитать проектный уклон по формуле

i = (Н кон – Н нач ) D (35)

где Н кон - проектная отметка конечной точки; Н нач проектная отметка начальной точки; D расстояние между точками. В данном примере:

i = ( 102,1 – 98,8) 387,4 = 0,0085.

Информация по уклонам заносится в графу уклонов (рис. 39).

Вычислить проектные отметки всех точек профиля. За начало
счета высот точек проектной линии принимать проектную отметку ее
начала и дальше с нарастающим итогом. Проектные отметки вычис-
ляются по формуле

Н N +1 = Н N + i * d , (36)

где Н N +1 – отметка последующей точки; Н N – отметка начальной точки проектной линии; i – уклон данной линии; d – расстояние нарастающим итогом от начала до точки, отметка которой определяется. Например, проектная отметка Н ПК1 первого пикета равна:

Н ПК1 = 98,80 + 0,0085 * 100 = 99,65 м

Произведение i * d есть превышение h между соответствующими точками. Знак превышения равен знаку уклона. Рассчитанные про-ектные высоты занести красным в графу проектных отметок (рис. 39), значения выписать до сотых долей метра.

Затем вычислить рабочие отметки h i по формуле

h i = Н факт – Н пр (37)

где Н пр проектная отметка точки; Н факт – фактическая отметка точки. Так для пикета ПК1 получим h ПК 1 = 100,30 – 99,65 = 0,65 м.

Их значения выписать в графу «рабочие отметки» (рис. 39) до со-тых долей метров.

4.3. Вычисление объемов земляных работ.

В таблицу вычисления объемов земляных работ (рис. 39) выписы-вают в соответствующие колонки: пикетаж; основание прямоугольника

с = а + в, где а – ширина водопровода, равная 1 м; в = 2 h , расстояние между соседними поперечными сечениями; объем земляных работ по каждой секции и суммарный по формуле:

V = P j СР * d j , (38)

где P j СР – среднее поперечное сечение секции j выемки грунта;

d j длина j секции.

Профиль оформить по образцу, красным цветом оформить пректную линию и проектные высоты.

4.4 . Расчет геодезических данных для вычисления угла

поворота трассы и выноса в натуру оси водо провода

способом полярных коо р динат.

Необходимо подготовить геодезические данные для выноса в натуру:

  • угол для выноса линии 102-А , который равен разности дирекционных углов направлений линий 102–А и 102-1;
  • угол поворота трассы ПОВ , который равен разности дирекционных углов направлений линий А -2 и 102–А;
  • Значения длин линий 102 – А и А 2 .

А также необходимые для этого вспомогательные данные: румбы линий 102–А и А -2 , дирекционные углы линий 102–А, А -2 и 102-1 (r 102- A , .102 –А , .102 –1 ) , линий А -2 и 102–А (r 102- A , r 2- A , .102 –А , 2-А , .102 –1 ) . Р ешить обратную геодезическую задачу по стороне 102–A и стороне А-2 . Для этого координаты точки А снять графически с плана. В примере координаты точки А равны:

X А = 467,5 м; Y А = 622,5 м.

Решение задачи произвести по формулам:

X = X К – X Н, для первой линии102-А:

X А-102 = X А – X 102 = 107,0 м,

для А-2 второй линии X 2-А = X 2 – X А = 159,54 ,

аналогично по ординате:

Y = Y К – Y Н, для первой Y А-102 = Y А – Y 102 = -202,0 м,

для второй Y 2-А = Y 2 – Y А = – 41,69 м.

Румбы вычисляются по значениям приращений координат:

arctg = Y / X, arctg 102- А -202,0 /107 = 62 0 05,3 1 ,

где с учётом знаков приращений румб r 102- A = СЗ 62 0 05,3 1 ;

arctg А -2 – 41,69 /159,54 = 14 0 38,7 1 , румб r 2- A = СЗ 14 0 38,7 1 .

Горизонтальное проложение вычисляется по формуле:

d = (X 2 + Y 2), соответственно для линий d 102-А и d 2-А получим:

d 102-А = (X 102-А 2 + Y 102-А 2 ) = 228,59 м,

d 2-А = (X 2-А 2 + Y 2-А 2 ) = 164,90 м.

Так как углы наклона проектных линий не превышают 2 0 , поэтому измеряемые на местности длины линии практически будут равны их горизонтальным проложениям.

Дирекционный угол направления 102-А равен:

102-А = 360 0 62 0 05,3 1 = 297 0 54,7 1 ,

угол для выноса линии102-А равен разности направлений линий 102–А и 102-1 (последнее берётся из таблицы 18, см стр. 59) равен:

= 102 – А .102 1 = 297 0 54,7 1 – 278 0 56 1 = 18 0 58,7 1 .

Угол поворота трассы получим для этого примера как разность дирекционных углов направлений А-2 и 102-А:

2-А = 360 0 14 0 38,7 1 = 345 0 21,3 1 , тогда угол поворота трассы ПОВ равен:

К = А -2 .102 -А = 345 0 21,3 1 297 0 54,7 1 = 47 0 26,6 1

На листе бумаги формата А4 составить разбивочный чертеж, на который занести необходимые геодезические данные для выноса точки А (угла поворота трассы водопровода).

4.5. Определение основных элементов и детальная разбивка

гор и зонтальной круговой кривой.

Исходными данными для расчета задания являются значение радиуса круговой кривой R , величина угла поворота трассы К и пикетажное значение вершины угла поворота трассы. Названные исходные данные выдаются индивидуально для каждого студента: значение радиуса кривой для каждого студента определяется в метрах по формуле R = 100 . (5 . (N гр -10) + N вар , а угол поворота

К определяется аналитически (см. выше п.4.4).

В методических указаниях рассматривается конкретный случай расчета и разбивки круговой кривой при R = 120 м;

К = 47 0 26,6 1 ; ВУ =ПК 3 + 28,59 .

4. 5.1. Основные элементы кривой и р асчё т пикетажных

знач е ний главных точек кривых

Основными элементами кривой являются: угол поворота

К , радиус кривой R , тангенс T – расстояние от вершины у г ла пов о рота ВУ до точек начала НК или конца кривой КК , длина кривой – K и домер Д – линейная разность между суммой двух тангенсов и длиной кривой, которые определяются по следующим формулам (39, 40, 41, 42) :

T = R . tg ( К 2), (39 )

где значение радиуса кривой для каждого студента определяется в метрах по формуле R = 100 . (5 . (N гр -10) + N вар , а угол поворота К определяется аналитически (см. стр). Значения кривой K и биссектрисы Б и домера Д определятся по следующим формулам:

K = R . k . 180; (40 )

Б = R (1 cos ( К 2) – 1); (41 )

Д = 2 T R . (42 )

Главными точками круговой кривой являются точки начала кривой НК, ее середина СК и конец кривой КК (см. рис.40).

Пикетажные значения главных точек кривых вычисляются по формулам:

НК = ВУ – Т, (43)

где ВУ – пикетажное значение вершины угла поворота;

КК = НК + К; (44)

СК = НК + К/2. (45)

Для контроля вычислений пикетажные значения СК и КК находятся дополнительно по формулам:

КК = ВУ + Т – Д; (46)

CК = ВУ – Д/2. (47)

Допустимое расхождение между пикетажными значениями точки конца круговой кривой и середины кривой, вычисленными по обеим формулам, не должно превышать 2 см (за счёт округлений).

Расчет пикетажных значений главных точек первой кривой приведен ниже. При расчетах необходимо в значениях основных элементов кривых выделять сотни метров (если они имеются). Например, вместо ВУ = 228,59 м, следует писать ПК2 + 28,59 м.

Расчет производится по следующей схеме:

Основная формула

ПИКЕТАЖНЫЕ ЗНАЧЕНИЯ ГЛАВНЫХ ТОЧЕК КРИВОЙ

ВУ ПК 2 + 28,59

– Т – 52,73

НК ПК 1 + 75,86

+ К + 99,37

КК ПК 2 + 75,23

Рис. 40 Образец оформления работы

Контрольная формула

ВУ ПК 2 + 28,59

+ Т + 52,73

– Д – 6,09

КК ПК 2 + 75,23

Расхождение пикетажных значений конца круговой кривой, вычисленных по основной и контрольной формулам, не должно превышать 2 см.

Пикетажное значение середины кривой вычислим дважды:

НК ПК 1 + 75,86 ВУ ПК 2 + 28,59

+ К 2 + 49,68 – Д 2 – 3,05

СК ПК 2 + 25,54 СК ПК 2 + 25,54

4.5.2. Вычисление координат для детальной разбивки

кр и вой.

Детальная разбивка кривой преследует цель получения на местности точек, расположенных через равный интервал l по длине кривой. Величина интервала разбивки кривой принимается равной 10 м – при радиусе кривой от 100 до 500 м.

В задании детальную разбивку кривой предусматривается выполнять способом прямоугольных координат. В этом способе за ось Х принимают направлении от точек начала или конца кривой (НК или КК) к вершине угла поворота ВУ, за ось У – перпендикулярное к оси Х направление в сторону внутреннего угла сопряжения трассы.

Координаты X N и Y N рассчитываются по формулам

X N = R . sin(N . i ); (48 )

Y N = R(1 – cos(N . i )); (49 )

i = 180 . l i . R ; (50 )

где R – радиус разбиваемой кривой;

N – порядковый номер точки, см. рис..

здесь i центральный угол, заключающий дугу l i .

Так как детальную разбивку кривых производят с обоих тангенсов, вычисление координат следует ограничивать линейной величиной тангенса кривой. Для нашего примера: R = 120 м, l =10 м, Т = 52,73 м, поэтому выбор координат ограничиваем для N · l = 40 м, так как точка разбивки при Т = 50 м будет практически рядом с концом биссектрисы.

Вычисленные координаты точек детальной разбивки кривой для рассматриваемого случая представлены в табл. 23. Таблица 23

Координаты детальной разбивки круговой кривой

способом прямоугольных координат

На листе ватмана формата А4 (рис. 40 Образец оформления работы) построить угол поворота, значение которого определены ранее. Отложить тангенсы в масштабе 1:500. Первый тангенс рекомендуется провести параллельно левому краю листа. Остальные элементы вычерчиваются в соответствии с расчетными данными.

Построение чертежа детальной разбивки круговой кривой способом прямоугольных координат. Пользуясь вычисленными значениями X и Y, построение детальной разбивки кривой осуществляют следующим образом. От точек начала НК и конца кривой КК на тангенсах по направлению к вершине угла поворота последовательно откладывают величины абсцисс X N в масштабе 1:500. В полученных точках строят перпендикуляры, по которым последовательно откладывают соответствующие ординаты Y N в масштабе. Концы ординат отмечают точками, которые будут обрисовывать положение кривой. При этом расстояния между точк а ми по дл и не кривой должны быть равны интервалу разбивки (для рассматриваемого случая 10 м), что является контролем произво д ства детальной разбивки. Разбивка кривой приведена на рис 36. Альтернативный вариант оформления работы можно выполнить по компьютерной технологии в Microsoft Word. При этом необходимо выдерживать построения кривой строго в масштабе 1:500 в формате А4. Для этого все значения преобразуются в мм плана м 1:500.

ЭЛЕКТРОСНАБЖЕНИЕ

С ОСНОВАМИ ЭЛЕКТРОТЕХНИКИ

Учебное пособие

Расчетно-графическая работа

г. Благовещенск

Издательство ДальГАУ

УДК 621.3

Горбунова Л.Н., Гусева С.А, Мармус Т.Н.

Учебное пособие предназначено для выполнения индивидуальной расчетно-графической работы (РГР) студентами очного и заочного обучения по направлению подготовки: 270800 –« Строительство» в соответствии с требованиями ФГОС ВПО по дисциплине «Электроснабжение с основами электротехники».

Рецензент: к.т.н., доцент каф. ЭиАТП Воякин С.Н.

Издательство ДальГАУ

ВВЕДЕНИЕ

Расчетно–графическая работа является самостоятельной работой студента и завершает изучение курса «Электроснабжение с основами электротехники», при выполнении которого закрепляются знания, полученные во время изучения теоретического материала. Расчетно-графическая работа позволяет закрепить и углубить теоретические знания, выработать навыки применения их для решения конкретных практических задач с умением оформлять технические документы. В соответствии с действующей программой курса «Электроснабжение с основами электротехники» расчетно-графическая работа должна содержать:

Титульный лист (приложение 1);

Основная часть;

Заключение;

Список использованной литературы.

Количество задач расчетно-графической работы определяется ведущим преподавателем.

Правила оформления расчетно-графической работы

Расчетно-графическая работа выполняется аккуратно, без исправлений, на одной стороне листа белой бумаги формата А4 (297х210 мм) и оформляется в соответствии с ГОСТами 2.105-79.2.304-81 и «стандарт организации, система качества – общие требования к оформлению текстовой части» (Благовещенск, 2012).

Разделы должны иметь порядковую нумерацию и обозначаться арабскими цифрами. Они могут быть разделены на подразделы. Подразделы нумеруются арабскими цифрами в пределах каждого раздела.

Уравнения и формулы, приводимые в расчетно-пояснительной записке, следует помещать на отдельных строках. Выше или ниже каждой формул должно быть оставлено не менее одной строки. Пояснения символов и числовых коэффициентов, входящих в формулу, если они не пояснялись ранее в тексте, должны быть приведены непосредственно под формулой. Пояснение каждого символа следует давать с новой строки в той последовательности, в которой они приведены в формуле. Первая строка пояснения должна начинаться со слова «где» без двоеточия после него.


Пример: ток в электрической ветви вычисляется по формуле

где U – напряжение на зажимах электрической ветви, В;

R – сопротивление электрической ветви, Ом.

Формулы должны нумероваться арабскими цифрами в пределах раздела. Номер формулы состоит из номера раздела и порядкового номера формулы, и его записывают справа в круглых скобках, на одинаковом расстоянии от правого поля на всех страницах текста. Ссылки в тексте на порядковые номера формул дают в круглых скобках, например: в формуле (1.1). Уравнения и системы уравнений нумеруются вместе с формулами.

Все формулы и расчеты выполняются только в единицах системы СИ.

Иллюстрации должны быть расположены после первого упоминания в тексте записи. Она должна иметь наименование и пояснительные данные (подрисуночный текст).

Таблицы должны иметь точное краткое название, подписываться сверху в соответствии с номером раздела и порядкового номера таблицы.

ЗАДАЧА 1. Расчет линейных электрических цепей постоянного тока

В данной задаче необходимо определить токи в ветвях при заданных ЭДС и сопротивлениях, входящих в цепь. Наиболее распространенным методом расчёта сложных электрических цепей является классический метод. Он заключается в непосредственном применении законов Кирхгофа для распределения токов по ветвям.

Для данной схемы (рис. 1.1) необходимо выполнить следующее:

1. Составить систему уравнений для определения токов в схеме по первому и второму закону Кирхгофа.

2. Найти все токи методом узловых потенциалов.

3. Найти все токи методом контурных токов.

4. Записать баланс мощностей для преобразованной схемы.

5. Построить потенциальную диаграмму в масштабе для внешнего контура схемы.

Исходные данные для задачи: Е 1 = 3 В; Е 2 = 66 В; Е 3 = 9 В;

R 1 = 1 Ом; R 2 = 4 Ом; R 3 = R 4 = 2 Ом; R 5 = 7 Ом; R 6 = 3 Ом.

Рисунок 1.1 – Исходная электрическая схема