Вольфрам применение. Что такое вольфрам? Что это за материал

В статье “Вольфрам. Свойства, применение, производство, продукция” подробно рассматривается тугоплавкий металл вольфрам. Описаны свойства вольфрама, указаны области его применения. Также перечислены различные марки вольфрама с указанием их особенностей.

Статья освещает процесс производства вольфрама от стадии обогащения руды до стадии получения заготовок в виде штабиков и слитков. Отмечаются характерные особенности каждой стадии.

Особое внимание в статье уделяется продукции (проволока, прутки, листы и др.). Описаны процессы изготовления той или иной продукции из вольфрама, ее характерные особенности и области применения.

Глава 1. Вольфрам. Свойства и области применения вольфрама

Вольфрам (обозначается W) - химический элемент VI группы 6-го периода таблицы Д.И. Менделеева, имеет номер 74; переходный металл светло-серого цвета. Самый тугоплавкий металл, имеет температуру плавления t пл = 3380 °С. С точки зрения применения металла вольфрам его наиболее важными свойствами являются плотность, температура плавления, электрическое сопротивление, коэффициент линейного расширения.

§1. Свойства вольфрама

Свойство Значение
Физические свойства
Атомный номер 74
Атомная масса, а.е.м. (г/моль) 183,84
Атомный диаметр, нм 0,274
Плотность, г/см 3 19,3
Температура плавления, °С 3380
Температура кипения, °С 5900
Удельная теплоемкость, Дж/(г К) 0,147
Теплопроводность, Вт/(м K) 129
Электрическое сопротивление, мкОм см 5,5
Коэффициент линейного термического расширения, 10 -6 м/мК 4,32
Механические свойства
Модуль Юнга, ГПа 415,0
Модуль сдвига, ГПа 151,0
Коэффициент Пуассона 0,29
Временное сопротивление σ B , МПа 800-1100
Относительное удлинение δ, % 0

Металл отличается очень высокой точкой кипения (5900 °С) и весьма малой скоростью испарения даже при температуре 2000 °С. Электропроводность вольфрама почти в три раза ниже электропроводности меди. К свойствам, ограничивающим сферу применения вольфрама, можно отнести большую плотность, высокую склонность к ломкости при низких температурах, малое сопротивление окислению при невысоких температурах.

По внешнему виду вольфрам похож на сталь. Применяется для создания сплавов с высокой прочностью. Обработке (ковке, прокатке и волочению) вольфрам поддается только при нагреве. Температура нагрева зависит от типа обработки. Например, ковка прутков проводится при нагреве заготовки до 1450-1500 °С.

§2. Марки вольфрама

Марка вольфрама Характеристика марки Цель введения присадки
ВЧ Вольфрам чистый (без присадок) -
ВА Вольфрам с кремнещелочной и алюминиевой присадками Повышение температуры первичной рекристализации, прочности после отжига, формоустойчивости при высоких температурах
ВМ Вольфрам с кремнещелочной и ториевой присадками Повышение температуры рекристализации и увеличение прочности вольфрама при высоких температурах
ВТ Вольфрам с присадкой окиси тория
ВИ Вольфрам с присадкой окиси иттрия Повышение эмиссионных свойств вольфрама
ВЛ Вольфрам с присадкой окиси лантана Повышение эмиссионных свойств вольфрама
ВР Сплав вольфрама и рения Увеличение пластичности вольфрама после высокотемпературной обработки, повышение температуры первичной рекристаллизации, прочности при высоких температурах, удельного электросопротивления и т.э.д.с.
ВРН Вольфрам без присадки, в котором допускается повышенное содержание примесей -
МВ Сплавы молибдена и вольфрама Повышение прочности молибдена при сохранении пластичности после отжига

§3. Области применения вольфрама

Вольфрам получил широкое применение благодаря своим уникальным свойствам. В промышленности вольфрам используется в виде чистого металла и в ряде сплавов.

Основные направления применения вольфрама
1. Специальные стали
Вольфрам используется в качестве одного из основных компонентов или легирующего элемента при производстве быстрорежущих сталей (содержат 9-24% вольфрама W), а также инструментальных сталей (0,8-1,2% вольфрама W - вольфрамовые инструментальные стали; 2-2,7% вольфрама W - хромвольфрамкремнистые инструментальные стали (также содержат хром Cr и кремний Si); 2-9% вольфрама W - хромвольфрамовые инструментальные стали (также содержат хром Cr); 0,5-1,6% вольфрама W - хромвольфраммарганцевые инструментальные стали (также содержат хром Cr и марганец Mn). Из перечисленных сталей изготовляют сверла, фрезы, пуансоны, штампы и др. В качестве примеров быстрорежущих сталей можно привести Р6М5, Р6М5К5, Р6М5Ф3. Буква “Р” означает, что сталь быстрорежущая, буквы “М” и “К” - что сталь легирована молибденом и кобальтом соответственно. Также вольфрам входит в состав магнитных сталей, которые делятся на вольфрамовые и вольфрамкобальтовые.

2. Твердые сплавы на основе карбида вольфрама
Карбид вольфрама (WC, W 2 C) - соединение вольфрама с углеродом (см. ). Он имеет высокую твердость, износостойкость и тугоплавкость. На его основе созданы самые производительные инструментальные твердые сплавы, которые содержат 85-95% WC и 5-14% Co. Из твердых сплавов изготовляют рабочие части режущих и буровых инструментов.

3. Жаропрочные и износостойкие сплавы
Данные сплавы используют тугоплавкость вольфрама. Распространенность получили сплавы вольфрама с кобальтом и хромом - стеллиты (3-5% W, 25-35% Cr, 45-65% Co). Их, обычно, с помощью наплавки наносят на поверхности сильно изнашивающихся деталей машин.

4. Контактные сплавы и “тяжелые сплавы”
К этим сплавам относятся сплавы вольфрама с медью и вольфрама с серебром. Это достаточно эффективные контактные материалы для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки и др.

5. Электровакуумная и электроосветительная техника
Вольфрам в виде проволоки, ленты и различных кованых деталей применяют в производстве электроламп, радиоэлектронике и рентгенотехнике. Вольфрам - лучший материал для нитей и спиралей накаливания. Вольфрамовая проволока и прутки служат электронагревателями для высокотемпературных печей (до ~3000 °С). Вольфрамовые нагреватели работают в атмосфере водорода, инертного газа или вакууме.

6. Сварочные электроды
Очень важной сферой применения вольфрама является сварка. Из вольфрама изготавливают электроды для дуговой сварки (см. ). Вольфрамовые электроды являются неплавящимися.

Глава 2. Производство вольфрама

§1. Процесс получения тугоплавкого металла вольфрам

Вольфрам принято относить к широкой группе редких металлов. Помимо данного металла в эту группу входят молибден, рубидий и другие. Для редких металлов характерны сравнительно небольшие масштабы производства и потребления, а также малая распространенность в земной коре. Ни один редкий металл не получают непосредственным восстановлением из сырья. Сначала сырье перерабатывается на химические соединения. Кроме того, все редкометаллические руды подвергаются дополнительному обогащению перед переработкой.

В процессе получения редкого металла можно выделить три основных стадии:

  • Разложение рудного материала - отделение извлекаемого металла от основной массы перерабатываемого сырья и концентрирование его в растворе или осадке.
  • Получение чистых химических соединений - выделение и очистка химического соединения.
  • Выделение металла из полученного соединения - получение чистых редких металлов.
Процесс получения вольфрама также имеет несколько стадий. Исходным сырьем являются два минерала - вольфрамит (Fe, Mn)WO 4 и шеелит CaWO 4 . Богатые вольфрамовые руды обычно имеют в своем составе 0,2 - 2 % вольфрама.
  • Обогащение вольфрамовой руды. Оно производится с помощью гравитации, флотации, магнитной или электростатической сепарации. В результате обогащения получают вольфрамовый концентрат, содержащий 55 - 65 % ангидрида (трехокиси) вольфрама WO 3 . В вольфрамовых концентратах контролируется содержание примесей - фосфора, серы, мышьяка, олова, меди, сурьмы и висмута.
  • Получение трехокиси (ангидрида) вольфрама WO 3 , который служит исходным сырьем для производства металлического вольфрама или его карбида. Для этого необходимо выполнить ряд действий, таких, как разложение концентратов, выщелачивание сплава или спека, получение технической вольфрамовой кислоты и др. В итоге должен получиться продукт, содержащий 99,90 - 99,95 % WO 3 .
  • Получение вольфрамового порошка. Чистый металл в виде порошка может быть получен из ангидрида вольфрама WO 3 . Для этого проводят процесс восстановления ангидрида водородом или углеродом. Восстановление углеродом применяется реже, так как при данном процессе WO 3 насыщается карбидами, что делает металл более хрупким и ухудшает обрабатываемость. При получении вольфрамового порошка используют специальные методы, позволяющие контролировать его химический состав, размер и форму зерен, гранулометрический состав. Например, быстрое нарастание температуры, малая скорость подачи водорода способствуют увеличению размера частиц порошка.
  • Получение компактного вольфрама. Компактный вольфрам, как правило, в виде штабиков или слитков является заготовкой для производства полуфабрикатов, таких, как проволока, пруток, лента и так далее.

§2. Получение компактного вольфрама

Существуют два способа получения компактного вольфрама. Первый заключается в применении методов порошковой металлургии. Второй - с помощью плавки в электрических дуговых печах с расходуемым электродом.

Методы порошковой металлургии
Данный способ получения ковкого вольфрама является наиболее распространенным, так как позволяет более равномерно распределять присадки, которые придают вольфраму специальные свойства (жаропрочность, эмиссионные свойства и другие).

Процесс получения компактного вольфрама данным способом состоит из нескольких стадий:

  • прессование штабиков из металлического порошка;
  • низкотемпературное (предварительное) спекание заготовок;
  • спекание (сварка) заготовок;
  • обработка заготовок с целью получения полуфабрикатов - вольфрамовой проволоки, ленты, вольфрамовых прутков; обычно заготовки обрабатывают под давлением (ковкой) или подвергают механической обработке резанием (например, шлифование, полирование).
К вольфрамовому порошку предъявляются специальные требования. Используют порошки, восстановленные только водородом и содержащие не более 0,05% примесей.

С помощью описанного метода порошковой металлургии получают вольфрамовые штабики квадратного сечения от 8х8 до 40х40 мм и длиной 280-650 мм. При комнатной температуре они имеют хорошую прочность, но при этом очень хрупки. Стоит заметить, что прочность и хрупкость (противоположное свойство - пластичность) относятся к разным группам свойств. Прочность - механическое свойство материала, пластичность - технологическое. Пластичность определяет пригодность материала для ковки. Если материал плохо поддается ковке, то он является хрупким. Для улучшения пластичности вольфрамовые штабики подвергаются ковке в нагретом состоянии.

Однако, описанным выше способом нельзя изготовить крупногабаритные заготовки большой массы, что является существенным ограничением. Для получения крупногабаритных заготовок, масса которых достигает нескольких сот килограмм применяют гидростатическое прессование. Данный метод позволяет получать заготовки цилиндрического и прямоугольного сечения, трубы и другие изделия сложной формы. При этом они имеют равномерную плотность, не содержат трещин и прочих дефектов.

Плавка
Плавка используется для получения компактного вольфрама в виде крупногабаритных заготовок (от 200 до 3000 кг), предназначенных для проката, вытяжки труб, производства изделий методом литья. Осуществляется плавка в электрических дуговых печах с расходуемым электродом и/или электронно-лучевая плавка.

При дуговой плавке в качестве электродов служат пакеты спеченных штабиков или спеченные заготовки гидростатического прессования. Плавка осуществляется в вакууме или разреженной атмосфере водорода. В результате получаются вольфрамовые слитки. Слитки вольфрама имеют крупнокристаллическую структуру и повышенную хрупкость, что вызвано высоким содержанием примесей.

Для уменьшения содержания примесей вольфрам изначально плавят в электронно-лучевой печи. Но после данного типа плавки вольфрам также имеет крупнокристаллическую структуру. Поэтому затем с целью уменьшения размера зерна полученные слитки подвергают плавке в электрической дуговой печи, добавляя небольшие количества карбидов циркония или ниобия, а также легирующие элементы для придания специальных свойств.

Для получения мелкозернистых слитков вольфрама, а также изготовления деталей методом литья применяется дуговая гарниссажная плавка с разливкой металла в изложницу.

Глава 3. Продукция из вольфрама. Прутки, проволока, полосы, порошок

§1. Вольфрамовые прутки

Производство
Вольфрамовые прутки - один из самых распространенных видов продукции из тугоплавкого металла вольфрам. Исходным материалом для производства прутков является штабик.

Для получения вольфрамовых прутков штабик подвергают ковке на ротационной ковочной машине. Ковка осуществляется в нагретом состоянии, так как при комнатной температуре вольфрам очень хрупкий. Можно выделить несколько этапов ковки. На каждом следующем этапе получают прутки меньшего диаметра, чем на предыдущем.

При первой ковке можно получить вольфрамовые прутки диаметром до 7 мм (при условии, что штабик имеет длину стороны 10-15 см). Ковку осуществляют при температуре заготовки 1450-1500 °С. В качестве материала нагревателя обычно используется молибден. После второй ковки получают прутки диаметром до 4,5 мм. Ее производят при температуре штабика 1300-1250 °С. При дальнейшей ковке получают вольфрамовые прутки диаметром до 2,75 мм. Стоит отметить, что вольфрамовые прутки марок ВТ, ВЛ и ВИ получают при более высокой температуре, чем прутки марок ВА и ВЧ.

Если в качестве исходной заготовки используют слитки из вольфрама, которые получают путем плавки, то горячую ковку не осуществляют. Это связано с тем, что данные слитки имеют грубую крупнокристаллическую структуру, и их горячая ковка может привести к образованию трещин и разрушению.

В таком случае вольфрамовые слитки подвергают двойному горячему прессованию (степень деформации около 90%). Первое прессование производится при температуре 1800-1900 °С, второе - 1350-1500 °С. Затем заготовки подвергают горячей ковке для получения прутков из вольфрама.

Применение
Вольфрамовые прутки нашли широкое применение в различных отраслях промышленности. Одно из наиболее распространенных применений - неплавящиеся сварочные электроды. Для таких целей подходят прутки из вольфрама марок ВТ, ВИ, ВЛ. Также вольфрамовые прутки марок ВА, ВР, МВ используются в качестве нагревателей. Нагреватели из вольфрама работают в печах до 3000 °С в атмосфере водорода, инертного газа или в вакууме. Прутки из вольфрама могут служить катодами радиоламп, электронных и газоразрядных приборов.

§2. Вольфрамовые электроды

Дуговая сварка
Сварочные электроды являются одними из важнейших компонентов, необходимых для сварки. Наиболее широко они применяются при дуговой сварке. Она относится к термическому классу сварки, в котором плавление осуществляется за счет термической энергии. Дуговая сварка (ручная, полуавтоматическая и автоматическая) является наиболее распространенным технологическим процессом сварки. Тепловая энергия создается вольтовой дугой, которая горит между электродом и изделием (деталью, заготовкой). Дуга - мощный стабильный электрический разряд в ионизированной атмосфере газов, паров металла. Электрод подводит электрический ток к месту сварки, чтобы получить дугу.

Сварочные электроды
Сварочный электрод - проволочный стержень с нанесенным на него покрытием (или без покрытия). Существует большое количество разнообразных электродов для сварки. Они различаются по химическому составу, длине, диаметру, определенный тип электродов подходит для сварки определенных металлов и сплавов и. т.д. Разделение электродов сварочных на плавящиеся и неплавящиеся является одним из важнейших видов их классификации.

Плавящиеся сварочные электроды расплавляются в процессе сварки, их металл вместе с расплавленным металлом свариваемой детали идет на пополнение сварочной ванны. Такие электроды выполняют из стали и меди.

Неплавящиеся электроды не расплавляются во время сварки. К данному типу можно отнести угольные и вольфрамовые электроды. При сварке с использованием неплавящихся вольфрамовых электродов необходима подача присадочного материала (обычно это сварочная проволока или пруток), который расплавляется и вместе с расплавленным материалом свариваемой детали образует сварочную ванну.

Также, электроды для сварки бывают покрытые и непокрытые. Покрытие имеет важную роль. Его составляющие могут обеспечить получение металла швов заданных состава и свойств, стабильное горения дуги, защиту расплавленного металла от воздействия воздуха. Соответственно составляющие покрытия могут быть легирующими, стабилизирующими, газообразующими, шлакообразующими, раскисляющими, а само покрытие - кислым, рутиловым, основным или целлюлозным.

Сварочные вольфрамовые электроды
Как было отмечено ранее вольфрамовые электроды являются неплавящимися и при сварке используются вместе с присадочной проволокой. Данные электроды, в основном, применяются для сварки цветных металлов и их сплавов (вольфрамовый электрод с присадкой циркония), высоколегированных сталей (вольфрамовый электрод с присадкой тория ЭВТ), а также вольфрамовый электрод хорошо подходит для получения сварного шва повышенной прочности, причем свариваемые детали могут быть разного химического состава.

Довольно распространенной является сварка с использованием вольфрамовых электродов в среде аргона. Данная среда положительно влияет на процесс сварки и качество сварного шва. Вольфрамовые электроды могут быть сделаны из чистого вольфрама или содержать различные присадки, которые улучшают качество процесса сварки и сварного шва. Особенностью неплавящихся сварочных электродов из чистого вольфрама (например, вольфрамовый электрод марки ЭВЧ) является не очень хорошая зажигаемость дуги.

Зажигание дуги проходит в три этапа:

  • короткое замыкание электрода на заготовку;
  • отвод электрода на незначительное расстояние;
  • возникновение устойчивого дугового разряда.
Для улучшения зажигаемости дуги и достижения высокой стабильности дуги во время сварки в электроды из вольфрама добавляют цирконий. Торирование (вольфрамовый электрод ЭВТ-15) также улучшает зажигаемость дуги и увеличивает срок службы сварочных электродов. Добавление в вольфрамовые электроды иттрия (вольфрамовый электрод ЭВИ-1, ЭВИ-2, ЭВИ-3) позволяет использовать их в различных токовых средах. Например, может быть дуга переменного или постоянного тока. В первом случае сварочная дуга питается от источника переменного тока. Различают однофазное и трехфазное питание дуги. Во втором - от источника постоянного тока.

Аргонодуговая сварка (Дуговая сварка неплавящимся вольфрамовым электродом в среде аргона) Данный вид сварки хорошо зарекомендовал себя при сваривании цветных металлов таких, как молибден, титан, никель, а также высоколегированных сталей. Это разновидность дуговой сварки, где источником высокой температуры, необходимой для создания сварочной ванны, является электрический ток. В данном виде аргонодуговой сварки основными элементами являются вольфрамовый электрод и инертный газ аргон. Аргон во время сварки подается на вольфрамовый электрод и защищает его, зону дуги и сварочную ванну от атмосферной газовой смеси (азот, водород, углекислый газ). Данная защита намного повышает качественные характеристики сварного шва, а также предохраняет сварочные вольфрамовые электроды от быстрого сгорания в среде воздуха. Газ аргон может применяться при сварке большого количества металлов и сплавов, так как он является инертным.

Стандарты для вольфрамовых электродов
В России неплавящиеся вольфрамовые электроды производятся в соответствии с требованиями стандартов и технических условий. Среди них: ГОСТ 23949-80 “Электроды вольфрамовые сварочные неплавящиеся. Технические условия”; ТУ 48-19-27-88 “Вольфрам лантанированный в виде прутков. Технические условия”; ТУ 48-19-221-83 “Прутки из иттрированного вольфрама марки СВИ-1. Технические условия”; ТУ 48-19-527-83 “Электроды вольфрамовые сварочные неплавящиеся ЭВЧ и ЭВЛ-2. Технические условия”.

§3. Вольфрамовая проволока

Производство
Вольфрамовая проволока - один из самых распространенных видов продукции из данного тугоплавкого металла. Исходным материалом для ее изготовления являются кованые вольфрамовые прутки диаметром 2,75 мм.

Волочение проволоки производится при температуре 1000 °С в начале процесса и 400-600 °С - в конце. При этом нагревается не только проволока, но и фильера. Нагрев осуществляется пламенем газовой горелки или электрическим нагревателем.

Волочение проволоки диаметром до 1,26 мм ведут на прямолинейном цепном волочильном стане, в пределах диаметра 1,25-0,5 мм - на блочном стане с диаметром катушки ~1000 мм, диаметра 0,5-0,25 - на машинах однократного волочения.

В результате ковки и волочения структура заготовки превращается в волокнистую, которая состоит из осколков кристаллов, вытянутых вдоль оси обработки. Такая структура приводит к резкому повышению прочности проволоки из вольфрама.

После волочения вольфрамовая проволока покрыта графитовой смазкой. Поверхность проволоки необходимо очистить. Очистку производят с помощью отжига, химического или электролитического травления, электролитической полировки. Полировка может увеличить механическую прочность вольфрамовой проволоки на 20-25%.

Применение
Вольфрамовая проволока используется для изготовления элементов сопротивления в нагревательных печах, работающих в атмосфере водорода, нейтрального газа или в вакууме при температурах до 3000 °С. Также проволока из вольфрама служит для производства термопар. Для этого используются вольфрам-рениевый сплав с 5% рения и вольфрам-рениевый сплав с 20% рения (ВР 5/20 ).

В ГОСТ 18903-73 “Проволока вольфрамовая. Сортамент” указаны области применения проволоки марок ВА, ВМ, ВРН, ВТ-7, ВТ-10, ВТ-15. Вольфрамовая проволока ВА в зависимости от группы, состояния поверхности и металла, диаметра применяется для изготовления спиралей ламп накаливания и других источников света, спиралеобразных катодов и подогревателей электронных приборов, пружин полупроводниковых приборов, петлевых подогревателей, неспиралеобразных катодов, сеток, пружин электронных приборов. Проволока марки ВРН применяется при получении вводов, траверсов и других деталей приборов, не требующих применения вольфрама со специальными присадками.

§4. Вольфрамовый порошок

Чистый вольфрамовый порошок служит исходным сырьем для производства компактного вольфрама (см. ). Карбид вольфрама WC, котрый по внешнему виду также представляет из себя порошок, используют для изготовления твердых сплавов.

В зависимости от назначения порошки вольфрама различают по средней величине частиц, набору зерен и другим параметрам.

Основная примесь в вольфрамовых порошках - кислород (0,05 - 0,3%). Металлические примеси содержатся в вольфрамовых порошках в очень малых количествах. Часто в порошки вольфрама вводят присадки из других металлов, которые улучшают определенные свойства конечного продукта. В качестве присадок часто используют алюминий, торий, лантан и другие.

Вольфрамовый порошок ВА, который применяется для изготовления проволоки, содержит равномерно распределенную кремнещелочную и алюминиевую присадки (0,32% K 2 O; 0,45% SiO 2 ; 0,03% Al 2 O 3), порошок из тугоплавкого металла вольфрам марки ВТ - присадку окиси тория (0,7 - 5%), ВЛ - присадку оскиси лантана (~1% La 2 O 3), ВИ - присадку окиси иттрия (~3% Y 2 O 3), ВМ - кремнещелочную и ториевую присадки (0,32% K 2 O; 0,45% SiO 2 ; 0,25% ThO 2).

§5. Вольфрамовые полосы (листы, ленты, фольга, пластины)

Производство
Как правило, плоский прокат из вольфрама - листы, ленты, пластины, фольга - получают применением двух операций - плоская ковка и прокатка. В качестве заготовки используются вольфрамовые штабики различных размеров.

Сначала штабики из вольфрама подвергаются плоской ковке пневматическим молотом. Ковку ведут при температуре 1500-1700 °С, которая по мере деформации уменьшается до 1200-1300 °С. Операция ковки продолжается до получения поковки толщиной 8-10 мм (при сечении штабика 25х25 мм) или 4-5 мм (при сечении штабика 12х12 мм).

Затем полученные поковки подвергают прокатке на прокатных станах. В начале процесса прокатки заготовки нагревают до 1300-1400 °С, затем понижают температуру до 1000-1200 °С. С помощью горячей прокатки получают вольфрамовые листы, ленты и пластины толщиной до 0,6 мм. Для получения листов, лент и пластинок меньшего размера проводят холодную прокатку. Для получения тонких листов из вольфрама толщиной до 0,125 мм и ленты (фольги) толщиной 0,02-0,03 мм применяют прокатку в пакетах. Пакет состоит из нескольких вольфрамовых лент равной толщины и более толстых молибденовых пластин, которые лежат поверх лент из вольфрама. Молибденовые пластины более пластичны и быстрее деформируются, чем вольфрамовые. В результате во время прокатки они становятся тоньше, чем вольфрамовые ленты. Через один или несколько переходов молибденовые пластины приходится заменять новыми так, чтобы толщина пакета оставалась приблизительно постоянной. Стоит отметить, что целью данного процесса является изготовление именно тонкой вольфрамовой ленты (фольги). Молибденовые пластины здесь являются расходным материалом, который необходим для осуществления прокатки в пакетах.

Заготовками для вольфрамовой ленты, пластин и листов также могут служить слитки из вольфрама, которые получают методом плавки (см. ). Слитки предварительно прессуют. Из слитков диаметром 70-80 мм прессованием получают прямоугольные заготовки толщиной 20-25 мм и шириной 50-60 мм. Затем заготовки деформируют на двухвалковых прессах.

Вольфрамовые листы В-МП
Вольфрамовые листы В-МП получили широкое распространение в промышленности. Они производятся из порошка вольфрама марок ПВ1 и ПВ2, содержащего 99,98% W. Листы и пластины В-МП должны иметь толщину 0,5-45 мм, обрезанные кромки. Листы могут быть механически обработанны в соответствии с требованиями заказчика. ГОСТ 23922-79 “Листы из вольфрама марки В-МП. Технические условия”.

Применение
Благодаря высокой жаропрочности вольфрамовые листы, как и другая продукция из данного тугоплавкого металла, применяются в условиях экстремально высоких температур. Из вольфрамовых листов изготавливается различная оснастка для высокотемпературных печей - тепловые экраны, подставки и другие элементы крепления. Распыляемые мишени из вольфрама, которые выполнены в виде пластин, используются для тонких барьерных пленок при металлизации полупроводниковых компонентов интегральных схем. В ядерной энергетике вольфрамовые листы используются в качестве экранов для ослабления потока радиоактивного излучения.

§6. Сплавы вольфрама с рением

В отдельный параграф стоит вынести сплавы вольфрама с рением и продукцию из этих сплавов. Более подробно здесь будут рассмотрены сплавы марок ВР5 и ВР20.

Сплавы двух данных металлов относятся к жаропрочным. Легирование вольфрама другими металлами снижает температуру его плавления. Но при легировании тугоплавким металлом температура плавления сплава снижается не так значительно. Вольфрам (W) и рений (Re) - тугоплавкие металлы.

При использовании рения в качестве присадки наблюдается “рениевый эффект”. 5% рения повышают жаропрочность и пластичность вольфрама. При 20-30% содержания рения наблюдается оптимальное сочетание прочности и пластичности с высокой технологичностью. Также к достоинствам вольфрам-рениевых сплавов можно отнести малую скорость испарения при температурах эксплуатации и высокое электрическое сопротивление.

Сплавы вольфрама с рением, как и компактный вольфрам, получают методами порошковой металлургии и плавки.

Интересной областью применения данных сплавов является измерение температуры. Вольфрамо-рениевая проволока ВР5 (5% Re, остальное - W) и ВР20 (20% Re, остальное - W) используются для изготовления высокотемпературных термопар.

Основным достоинством таких термопар является диапазон измеряемых температур. Поскольку сплавы ВР 5/20 являются жаропрочными, то с помощью термопар, сделанных из соответствующей проволоки, можно измерять температуры больше 2000 °С. Однако термопары данного вида должны находиться в инертной среде.

Наиболее часто для изготовления термопар используется вольфрамо-рениевая термоэлектродная проволока ВР5, ВР20 Ø 0,2; 0,35; 0,5 мм.

§7. Карбиды вольфрама

Очень важными с практической точки зрения являются соединения вольфрама с углеродом - карбиды вольфрама. Вольфрам образует два карбида - W 2 C и WC. Указанные карбиды различаются растворимостью в карбидах других тугоплавких металлов и химическим поведением в различных кислотах. Карбиды вольфрама, подобно карбидам других тугоплавких металлов, обладают металлической проводимостью и положительным коэффициентом электросопротивления. Тугоплавкость и высокая твердость карбидов обусловлены прочными межатомными связями в их кристаллах. Причем высокая твердость карбида WC сохраняется и при повышенных температурах.

Наиболее распространенный способ получения карбидов вольфрама WC и W 2 C - прокаливание смеси порошкообразного вольфрама с сажей в интервале температур 1000-1500 °С.

Карбиды вольфрама WC и W 2 C применяются в основном для изготовления твердых сплавов.

Твердые сплавы
Можно выделить 2 группы твердых сплавов на основе карбида вольфрама:

  • литые твердые сплавы (часто называемые литыми карбидами вольфрама);
  • спеченные твердые сплавы.
Литые твердые сплавы получают методом литья. Для получения сплава обычно исходят из порошкообразного вольфрама, карбида с недостатком углерода (до 3% C) или смеси WC + W, в которой содержание углерода не превышает 3%. Мелкозернистая структура карбидов данного типа обеспечивает более высокую твердость и износоустойчивость сплава. Однако литые сплавы достаточно хрупкие. Это обстоятельство ограничивает их применение. Главным образом, литые твердые сплавы применяются при изготовлении буровых инструментов и волок для тонкого волочения проволоки.

Спеченные твердые сплавы сочетают в себе монокарбид вольфрама WC и цементирующий металл-связку, которым обычно служит кобальт, реже - никель. Такие сплавы могут быть получены только методом порошковой металлургии. Порошок карбида вольфрама и порошок кобальта или никеля смешивают, прессуют в изделия необходимой формы, а затем спекают при температурах близких к температуре плавления цементирующего металла. Помимо высокой твердости и износоустойчивости данные сплавы обладают хорошей прочностью. Спеченные твердые сплавы являются наиболее производительными современными инструментальными материалами для обработки металлов резанием. Также они используются для изготовления волок, штампов, бурового инструмента. Среди твердых сплавов, для производства котрых используется карбид вольфрама, стоит выделить сплавы группы ВК - вольфрамокобальтовые твердые сплавы. Широкое распространение в промышленности получили сплавы ВК8 и ВК6. Из них изготовляют резцы, сверла, фрезы, а также другой режущий и буровой инструмент.

Заключение

В данной статье рассмотрены различные аспекты, связанные с тугоплавким металлом ВОЛЬФРАМ - свойства, области применения, производство, продукция.

Как описано в статье, процесс получения данного металла состоит из многих стадий и является достаточно трудоемким. Авторы постарались выделить наиболее значимые этапы производства вольфрама и обратить внимание на важные особенности.

Обзор свойств и областей применения вольфрама показывает, что это очень важный материал, без которого в некоторых отраслях промышленности просто невозможно обойтись. Он обладает уникальными свойствами, которые в некоторых ситуациях нельзя получить путем применения других материалов.

Обзор выпускаемой промышленностью продукции из вольфрама - проволоки, прутков, листов, порошка - позволяет лучше понять ее особенности, важные свойства и конкретные применения.

Мировое производство вольфрама - примерно 32 тыс. т в год. С начала нашего века оно не раз испытывало резкие взлеты и столь же крутые спады. На диаграмме видно, что пики на кривой производства в точности отвечают кульминационным моментам первой и второй мировых войн. И сейчас вольфрам является сугубо стратегическим металлом

Диаграмма мирового производства вольфрама (в тыс. т) в первой половине XX в.
Из вольфрамовой стали и других сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей.

Вольфрам - непременная составная часть лучших марок инструментальной стали. В целом металлургия поглощает почти 95% всего добываемого вольфрама. (Характерно, что она широко использует не только чистый вольфрам, но главным образом более дешевый ферровольфрам - сплав, содержащий 80% W и около 20% Fe; получают его в электродуговых печах).

Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин.

Псевдосплавы вольфрама с медью и серебром - превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.

О применении вольфрама в волосках электроламп говорилось в начале статьи. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, фосфорно-вольфрамовая гетерополикислота применяется для производства лаков и ярких, устойчивых на свету красок. Раствор вольфрамата натрия Na2WO4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных металлов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.

Прошлое и настоящее вольфрама дают все основания считать его металлом-тружеником.


Вольфрам относится к тугоплавким металлам, которые сравнительно мало распространены в земной коре. Так, содержание в земной коре (в %) вольфрама примерно 10 -5 , рения 10 -7 , молибдена 3.10 -4 , ниобия 10 -3 , тантала 2.10 -4 и ванадия 1,5.10 -2 .

Тугоплавкие металлы являются переходными элементами и располагаются в IV, V, VI и VII группах (подгруппа А) периодической системы элементов. С увеличением атомного номера возрастает температура плавления тугоплавких металлов в каждой из подгрупп.

Элементы VA и VIA групп (ванадий, ниобий, тантал, хром, молибден и вольфрам) являются тугоплавкими металлами с объемно-центрированной кубической решеткой в отличие от других тугоплавких металлов, имеющих гранецентрированную и гексагональную плотно упакованную структуру.

Известно, что главным фактором, определяющим кристаллическую структуру и физические свойства металлов и сплавов, является природа их межатомных связей. Тугоплавкие металлы характеризуются высокой прочностью межатомной связи и, как следствие, высокой температурой плавления, повышенной механической прочностью и значительным электрическим сопротивлением.

Возможность исследования металлов методом электронной микроскопии позволяет изучать структурные особенности атомного масштаба, выявляет взаимосвязи между механическими свойствами и дислокациями, дефектами упаковки и др. Полученные данные показывают, что характерные физические свойства, отличающие тугоплавкие металлы от обычных, определяются электронной структурой их атомов. Электроны могут в различной степени переходить от одного атома к другому, при этом вид перехода отвечает определенному типу межатомной связи. Особенность электронного строения определяет высокий уровень межатомных сил (связей), высокую температуру плавления, прочность металлов и их взаимодействие с другими элементами и примесями внедрения. У вольфрама химически активная оболочка по энергетическому уровню включает электроны 5 d и 6 s.

Из тугоплавких металлов наибольшую плотность имеет вольфрам - 19,3 г/см 3 . Хотя при использовании в конструкциях ^большую плотность вольфрама можно рассматривать как отрицательный показатель, все же повышенная прочность при высоких температурах позволяет снизить массу изделий из вольфрама за счет уменьшения их размеров.

Плотность тугоплавких металлов в большой степени зависит от их состояния. Например, плотность спеченного штабика вольфрама колеблется в пределах 17,0-18,0 г/см 3 , а плотность кованого штабика со степенью деформации 75% составляет 18,6-19,2 г/см 3 . То же наблюдается и у молибдена: спеченный штабик имеет плотность 9,2-9,8 г/см 3 , кованый со степенью деформации 75% -9,7-10,2 г/см 3 и литой 10,2 г/см 3 .

Некоторые физические свойства вольфрама, тантала, молибдена и ниобия для сравнения приведены в табл. 1. Теплопроводность вольфрама составляет менее половины теплопроводности меди, но она намного выше, чем у железа или никеля.

Тугоплавкие металлы групп VA, VIA, VIIА периодической системы элементов по сравнению с другими элементами имеют меньший коэффициент линейного расширения. Наименьший коэффициент линейного расширения имеет вольфрам, что указывает на высокую стабильность его атомной решетки и является уникальным свойством этого металла.

Вольфрам имеет теплопроводность примерно в 3 раза меньшую, чем электропроводность отожженной меди, но она выше, чем у железа, платины и фосфоритной бронзы.

Для металлургии большое значение имеет плотность металла в жидком состоянии, так как эта характеристика определяет скорость движения по каналам, процесс удаления газообразных и неметаллических включений и влияет на образование усадочной раковины и пористости в слитках. У вольфрама эта величина выше, чем у других тугоплавких металлов. Однако другая физическая характеристика - поверхностное натяжение жидких тугоплавких металлов при температуре плавления - отличается меньше (см. табл. 1). Знание этой физической характеристики необходимо при таких процессах, как нанесение защитных покрытий, при пропитке, плавку и литье.

Важным литейным свойством металла является жидкотекучесть. Если для всех металлов эта величина определяется при заливке жидкого металла в спиральную форму при температуре заливки выше температуры плавления на 100-200° С, то жидкотекучесть вольфрама получена экстраполяцией эмпирической зависимости этой величины от теплоты плавления.

Вольфрам устойчив в различных газовых средах, кислотах и некоторых расплавленных металлах. При комнатной температуре вольфрам не взаимодействует с соляной, серной и фосфорной кислотами, не подвергается воздействию растворенной азотной кислоты и в меньшей степени, чем молибден, реагирует на смесь азотной и фтористоводородной кислот. Вольфрам обладает высокой коррозионной стойкостью в среде некоторых щелочей, например в среде гидроокиси натрия и калия, в которых проявляет стойкость до температуры 550° С. При действии расплавленного натрия он устойчив до 900° С, ртути - до 600°С, галлия до 800 и висмута до 980° С. Скорость коррозии в этих жидких металлах не превышает 0,025 мм/год. При температуре 400-490° С вольфрам начинает окисляться в среде воздуха и в кислороде. Слабая реакция происходит при нагреве до 100°С в соляной,азотной и плавиковой кислотах. В смеси плавиковой и азотной кислот идет быстрое растворение вольфрама. Взаимодействие с газовыми средами начинается при температурах (°С): с хлором 250, с фтором 20. В углекислом газе вольфрам окисляется при 1200° С, в аммиаке реакция не происходит.

Закономерность окисления тугоплавких металлов определяется в основном температурой. Вольфрам до 800-1000° С имеет параболическую закономерность окисления, а свыше 1000° С - линейную.

Высокая коррозионная стойкость в жидкометаллических средах (натрий, калий, литий, ртуть) позволяет применять вольфрам и его сплавы в энергетических установках.

Прочностные свойства вольфрама зависят от состояния материала и температуры. Для кованых прутков вольфрама предел прочности после рекристаллизации меняется в зависимости от температуры испытаний от 141 кгс/мм 2 при 20° С до 15,5 кгс/мм 2 при 1370° С. Полученный методом порошковой металлургии вольфрам при изменении температуры от 1370 до 2205° С имеет? b = 22,5?6,3 кгс/мм 2 . Прочность вольфрама особенно увеличивается в процессе холодной деформации. Проволока диаметром 0,025 мм имеет предел прочности 427 кгс/мм 2 .

Твердость деформированного технически чистого вольфрама HВ 488, отожженного НВ 286. При этом такая высокая твердость сохраняется вплоть до температур, близких к точке плавления, и в значительной степени зависит от чистоты металла.

Модуль упругости приближенно связан с атомным объемом температуры плавления

где T пл - абсолютная температура плавления; V aТ - атомный объем; К - константа.

Отличительной особенностью вольфрама среди металлов является также высокая объемная деформация, которая определяется из выражения

где Е - модуль упругости первого рода, кгс/мм 2 ; ?-коэффициент поперечной деформации.

Табл. 3 иллюстрирует изменение объемной деформации для стали, чугуна и вольфрама, рассчитанной по приведенному выше выражению.

Пластичность технически чистого вольфрама при 20 е С составляет менее 1 % и растет после зонной электронно-лучевой очистки от примесей, а также при легировании его добавкой 2% окиси тория. С увеличением температуры пластичность повышается.

Большая энергия межатомных связей металлов групп IV, V, VIA определяет их высокую прочность при комнатной и повышенных температурах. Механические свойства тугоплавких металлов существенно зависят от их чистоты, способов получения, механической и термической обработки, вида полуфабрикатов и других факторов. Большая часть сведений о механических свойствах тугоплавких металлов, опубликованных в литературе, получена на недостаточно чистых металлах, так как плавку в условиях вакуума начали применять сравнительно недавно.

На рис. 1 показана зависимость температуры плавления тугоплавких металлов от положения в периодической системе элементов.

Сравнение механических свойств вольфрама после дуговой плавки и вольфрама, полученного методом порошковой металлургии, показывает, что хотя их предел прочности отличается незначительно, однако более пластичным оказывается вольфрам дуговой плавки.

Твердость по Бринеллю вольфрама в виде спеченного штабика составляет НВ 200-250, а прокатанного нагартованного листа НВ 450-500, твердость молибдена равна соответственно НВ 150- 160 и НВ 240-250.

Легирование вольфрама проводят с целью повышения его пластичности, для этого используют прежде всего элементы замещения. Все больше внимания уделяют попыткам повысить пластичность металлов группы VIA добавками небольших количеств элементов групп VII и VIII. Повышение пластичности объясняют тем, что при легировании переходных металлов добавками в сплаве создается неоднородная электронная плотность вследствие локализации электронов легирующих элементов. При этом атом легирующего элемента изменяет силы межатомной связи в прилегающем объеме растворителя; протяженность такого объема должна зависеть от электронной структуры легирующего и легируемого металлов.

Трудность создания вольфрамовых сплавов состоит в том, что пока не удается при повышении прочности обеспечить необходимую пластичность. Механические свойства вольфрамовых сплавов, легированных молибденом, танталом, ниобием и окисью тория (при кратковременных испытаниях), приведены в табл. 4.

Легирование вольфрама молибденом позволяет получать сплавы, которые по своим прочностным свойствам превосходят нелегированный вольфрам вплоть до температур 2200° С (см. табл. 4). При повышении содержания тантала с 1,6 до 3,6% при температуре 1650°С прочность увеличивается в 2,5 раза. Это сопровождается уменьшением удлинения в 2 раза.

Разработаны и осваиваются дисперсионно упрочненные и сложнолегированные сплавы на основе вольфрама, которые содержат молибден, ниобий, гафний, цирконий, углерод. Например, следующие составы: W - 3% Mo - 1 % Nb; W - 3% Mo - 0,1% Hf; W - 3% Mo - 0,05% Zr; W - 0,07% Zr - 0,004% B; W - 25% Mo - 0,11 % Zr - 0,05% C.

Сплав W - 0,48% Zr-0,048% С имеет? b = 55,2 кгс/мм 2 при 1650° С и 43,8 кгс/мм 2 при 1925° С.

Высокие механические свойства имеют вольфрамовые сплавы, содержащие тысячные доли процента бора, десятые доли процента циркония, и гафния и около 1,5% ниобия. Прочность этих сплавов на разрыв при высоких температурах составляет 54,6 кгс/мм 2 при 1650° С, 23,8 кгс/мм 2 при 2200° С и 4,6 кгс/мм 2 при 2760° С. Однако температура перехода (около 500° С) таких сплавов из пластического состояния в хрупкое достаточно высока.

В литературе имеются сведения о сплавах вольфрама с 0,01 и 0,1% С, которые характеризуются пределом прочности, превышающим в 2-3 раза предел прочности рекристаллизованного вольфрама.

Рении существенно повышает жаропрочность сплавов вольфрама (табл. 5).


Очень давно и в широких масштабах применяется вольфрам и его сплавы в электротехнической и электровакуумной технике. Вольфрам и его сплавы являются основным материалом для изготовления нитей накаливания, электродов, катодов и других элементов конструкций мощных электровакуумных приборов. Высокая эмиссионная способность и светоотдача в накаленном состоянии, низкая упругость пара делают вольфрам одним из важнейших материалов для этой отрасли. В электровакуумных приборах для изготовления деталей, работающих при низких температурах, не проходящих предварительную обработку при Температуре выше 300° С, применяют чистый (без присадок) вольфрам.

Присадки различных элементов существенно изменяют свойства вольфрама. Это дает возможность создавать сплавы вольфрама с необходимыми характеристиками. Например, для деталей электровакуумных приборов, которые требуют применения непровисающего вольфрама при температурах до 2900° С и с высокой температурой первичной рекристаллизации, используют сплавы с кремнещелочными или алюминиевыми присадками. Кремнещелочные и ториевые присадки повышают темпера-туру рекристаллизации и увеличивают прочность вольфрама при высоких температурах, что позволяет изготовлять детали, работающие при температуре до 2100° С в условиях повышенных механических нагрузок.

Катоды электронных и газоразрядных приборов, крючки и пружины генераторных ламп с целью повышения эмиссионных свойств изготовляют из вольфрама с присадкой окиси тория (например, марок ВТ-7, ВТ-10, ВТ-15, с содержанием окиси тория соответственно 7, 10 и 15%).

Высокотемпературные термопары изготовляют из сплавов вольфрама с рением. Вольфрам без присадок, в котором допускается повышенное содержание примесей, применяют при изготовлении холодных деталей электровакуумных приборов (вводы в стекло, траверсы). Электроды импульсных ламп и холодные катоды газоразрядных ламп рекомендуется делать из сплава вольфрама с никелем и барием.

Для работы при температурах выше 1700° С следует применять сплавы ВВ-2 (вольфрамониобиевые). Интересно отметить, что при кратковременных испытаниях сплавы с содержанием ниобия от 0,5 до 2% имеют предел прочности при 1650°С в 2-2,5 раза выше нелегированного вольфрама. Наиболее прочным является сплав вольфрама с 15% молибдена. Сплавы W-Re-Th O 2 обладают хорошей обрабатываемостью по сравнению со сплавами W - Re; добавление двуокиси тория делает возможной такую обработку, как точение, фрезерование, сверление.

Легирование вольфрама рением повышает его пластичность, прочностные же свойства с ростом температуры становятся примерно одинаковыми. Добавки в сплавы вольфрама мелкодисперсных окислов повышают их пластичность. Кроме того, эти добавки значительно улучшают обрабатываемость резанием.

Сплавы вольфрама с рением (W - 3% Re; W - 5% Re; W - 25% Re) применяют для измерения и контроля температуры до 2480° С при производстве стали и в других видах техники. Увеличивается применение сплавов вольфрама с рением при изготовлении антикатодов в рентгеновских трубках. Молибденовые антикатоды, покрытые этим сплавом, работают под большой нагрузкой и имеют более длительный срок службы.

Высокая чувствительность вольфрамовых электродов к изменению концентрации водородных ионов позволяет применять их для потенциометрического титрования. Такие электроды используют для контроля воды и различных растворов. Они просты по конструкции и имеют малую величину электрического сопротивления, что делает перспективным их применение в качестве микроэлектродов при исследовании кислотостойкости приэлектродного слоя в электрохимических процессах.

Недостатками вольфрама являются его низкая пластичность (?<1%), большая плотность, высокое поперечное сечение захвата тепловых нейтронов, плохая свариваемость, низкая ока-линостойкость и плохая обрабатываемость резанием. Однако легирование его различными элементами позволяет улучшить эти характеристики.

Ряд деталей для электротехнической промышленности и сопловые вкладыши двигателей изготовляют из вольфрама, пропитанного медью или серебром. Взаимодействие тугоплавкой твердой фазы (вольфрама) с пропитывающим металлом (медью или серебром) такое, что взаимная растворимость металлов практически отсутствует. Краевые углы смачивания вольфрама жидкой медью и серебром достаточно малы по причине большой поверхностной энергии вольфрама, и этот факт улучшает проникновение серебра или меди. Вольфрам, пропитанный серебром или медью, производили первоначально двумя методами: полным погружением заготовки из вольфрама в расплавленный металл или частичным погружением подвешенной заготовки из вольфрама. Есть также методы пропитки с использованием гидростатического давления жидкости или вакуумного всасывания.

Изготовление из вольфрама электротехнических контактов, пропитанных серебром или медью, осуществляют следующим образом. Сначала производят прессование порошка вольфрама и его спекание при определенных технологических режимах. Затем полученную заготовку пропитывают. В зависимости от полученной пористости заготовки меняется доля пропитывающего вещества. Так, содержание меди в вольфраме может меняться от 30 до 13% при изменении удельного давления прессования от 2 до 20 тс/см 2 . Технология получения пропитанных материалов довольно проста, экономична, и качество таких контактов выше, так как один из компонентов дает материалу высокую твердость, эрозионную стойкость, большую температуру плавления, а другой повышает электропроводность.

Хорошие результаты получают при применении пропитанного вольфрама медью или серебром для изготовления сопловых вкладышей твердотопливных двигателей. Повышение таких свойств пропитанного вольфрама, как теплопроводность и электропроводность, коэффициента термического расширения, значительно увеличивает долговечность двигателя. Кроме того, испарение пропитывающего металла из вольфрама во время работы двигателя имеет положительное значение, снижая тепловые потоки и уменьшая эрозионное воздействие продуктов сгорания.

Порошок вольфрама применяют при изготовлении пористых материалов для деталей электростатического ионного двигателя. Применение вольфрама для этих целей позволяет улучшить его основные характеристики.

Теплоэрозионные свойства сопел, изготовленных из вольфрама, упрочненного дисперсными окислами ZrO2, MgO2, V2O3, НfO 2 , повышаются по сравнению с соплами из спеченного вольфрама. После соответствующей подготовки на поверхность вольфрама для снижения высокотемпературной коррозии наносят гальванические покрытия, например покрытие никелем, которое выполняют в электролите, содержащем 300 г/л сернокислого натрия, 37,5 г/л борной кислоты при плотности тока 0,5-11 А/дм 2 , температуре 65° С и рН = 4.

Химия

Элемент № 74 вольфрам причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности онможет поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» - так называли тогда наиболее распространенные минералы вольфрама - вольфрамит и шеелит. А элементарный вольфрам был открыт в последней четверти XVIII в .

Вольфрамовая руда

Очень скоро этот металл получил практическое значение - как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали, элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость - позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые - нет.
Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.
Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2-7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700-800° С, в то время как обычная сталь начинает размягчаться при нагреве всего до 200° С. Еще большей твердостью обладают «стеллиты» - сплавы
вольфрам а с хромом и кобальтом (без железа) и особенно карбиды вольфрама - его соединения с углеродом. Сплав «видна» (карбид вольфрама, 5-15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000- 1100° С. Резцами из этого сплава можно снимать за минуту до 1500-2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.
В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200° С и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».

Минералы и руды вольфрама

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисыо вольфрама WO 3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeW0 4 *nMnW0 4). Этот раствор - тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше побнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит - коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит - вольфрамат кальция CaW04. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью - способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Месторождения вольфрамовых руд теологически связаны с областями распространения гранитов . Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Крупные кристаллы вольфрамита или шеелита - большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы - средняя концентрация вольфрама в итоге оказывается в лучшем случае 1-2%. Поэтому извлечь вольфрам из руд очень трудно.


Как получают вольфрам

Первая стадия - обогащение руды, отделение ценных компонентов от основной массы - пустой породы. Методы обогащения - обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями - магнитной сепарацией (для вольфрамитиых руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение - вольфрамат натрия. Другой способ получения этого вещества - выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
CaW0 4 → H 2 W0 4 или (NH 4) 2 W0 4 → WO 3 , можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения окиси вольфрама - через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементарный металл.


Превращение окислов или хлоридов в металл - следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама - водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с W0 3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450-600° С) и в «горячих» (750-1100° С) зонах; в «холодных» - до низшего окисла W0 2 , дальше - до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется более высокая температура - до 1300-1400° С. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.
Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид - WCl 6 , который разлагается на вольфрам и хлор при 1600° С. В присутствии водорода этот процесс идет уже при 1000° С.
Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100-1300° С) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней - пластичность и ковкость.

Главные свойства

Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее - в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.


По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410° С, а кипит лишь при 6690° С. Такая температура - на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам - блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок - серый, темно-серый и даже черный (чем мельче зернение, тем темнее).

Химическая активность

Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, в атомных реакторах в результате различных ядерных реакций образуются еще 8 радиоактивных изотопов вольфрама с массовыми числами от 176 до 188; все они сравнительно недолговечны: их периоды полураспада - от нескольких часов до нескольких месяцев.
Семьдесят четыре электрона атома вольфрама расположены вокруг ядра таким образом, что шесть из них находятся на внешних орбитах и могут быть отделены сравнительно легко. Поэтому максимальная валентность вольфрама равна шести. Однако строение этих внешних орбит особое - они состоят как бы из двух «ярусов»: четыре электрона принадлежат предпоследнему уровню -d, который оказывается, таким образом, заполненным меньше чем наполовину. (Известно, что число электронов в заполненном уровне d равно десяти.) Эти четыре электрона (очевидно, неспарепные) способны легко образовывать химическую связь. Что же касается двух «самых наружных» электронов, то их оторвать совсем легко.
Именно особенностями строения электронной оболочки объясняется высокая химическая активность вольфрама. В соединениях он бывает не только шестивалентным, но и пяти-, четырех-, трех-, двух- и нульвалентным. (Неизвестны лишь соединения одновалентного вольфрама).
Активность вольфрама проявляется в том, что он вступает в реакции с подавляющим болишинстом элементов, образуя множество простых и сложных соединений. Даже в сплавах вольфрам часто оказывается химически связанным. А с кислородом и другими окислителями он взаимодействует легче, чем большинство тяжелых металлов.
Реакция вольфрама с кислородом идет при нагревании, особенно легко - в присутствии паров воды. Если вольфрам нагревать на воздухе, то при 400-500° С на поверхности металла образуется устойчивый низший окисел W0 2 ; вся поверхность затягивается коричневой пленкой. При более высокой температуре сначала получается промежуточный окисел W 4 O 11 синего цвета, а затем лимонножелтая трехокись вольфрама W0 3 , которая возгоняется при 923° С.


Сухой фтор соединяется с тонкоизмельченным вольфрамом уже при небольшом нагревании. При этом образуется гексафторид WF6 - вещество, которое плавится при 2,5° С и кипит при 19,5° С. Аналогичное соединение - WCl 6 - получается при реакции с хлором, но лишь при 600° С. Сине-стального цвета кристаллы WCl 6 плавятся при 275° С и кипят при 347° С. С бромом и йодом вольфрам образует малоустойчивые соединения: пента- и дибромид, тетра- и дииоднд.
При высокой температуре вольфрам соединяется с серой, селеном и теллуром, с азотом и бором, с углеродом и кремнием. Некоторые из этих соединений отличаются большой твердостью и другими замечательными свойствами.
Очень интересен карбонил W(CO) 6 . Здесь вольфрам соединен с окисью углерода и, следовательно, обладает нулевой валентностью. Карбонил вольфрама неустойчив; его получают в специальных условиях. При 0° он выделяется из соответствующего раствора в виде бесцветных кристаллов, при 50° С возгоняется, а при 100° С полностью разлагается. Но именно это соединение позволяет получить тонкие и плотные покрытия из чистого вольфрама.
Не только сам вольфрам, но и многие его соединения весьма активны. В частности, окись вольфрама WO 3 способна к полимеризации. В результате образуются так называемые изополисоединения и гетерополисоединения: молекулы последних могут содержать более 50 атомов.


Сплавы

Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы пли весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.
Во избежание окисления все операции проводят в вакууме или в атмосфере аргона. Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.


С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.
Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) - смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.
Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.
На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.
Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10-15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.
Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот - азотной, серной и соляной - даже при кипячении. Им опасна только смесь плавиковой и азотной кислот.

Применение чистого металла и вольфрамсодержащих сплавов основано, главным образом, на их тугоплавкости, твердости и химической стойкости. Чистый вольфрам используется для изготовления нитей электрических ламп накаливания и электронно-лучевых трубок, в производстве тиглей для испарения металлов, в контактах автомобильных распределителей зажигания, в мишенях рентгеновских трубок; в качестве обмоток и нагревательных элементов электрических печей и как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах. Быстрорежущие стали (17,5-18,5% вольфрама), стеллит (на основе кобальта с добавлением Cr, W, С), хасталлой (нержавеющая сталь на основе Ni) и многие другие сплавы содержат вольфрам. Основой при производстве инструментальных и жаропрочных сплавов является ферровольфрам (68-86% W, до 7% Mo и железо), легко получающийся прямым восстановлением вольфрамитового или шеелитового концентратов. «Победит» - очень твердый сплав, содержащий 80-87% вольфрама, 6-15% кобальта, 5-7% углерода, незаменим в обработке металлов, в горной и нефтедобывающей промышленности.

Вольфраматы кальция и магния широко используются во флуоресцентных устройствах, другие соли вольфрама используются в химической и дубильной промышленности. Дисульфид вольфрама представляет собой сухую высокотемпературную смазку, стабильную до 500° С. Вольфрамовые бронзы и другие соединения элемента применяются в изготовлении красок. Многие соединения вольфрама являются отличными катализаторами.

Долгие годы с момента открытия вольфрам оставался лабораторной редкостью, лишь в 1847 Оксланд получил патент на производство вольфрамата натрия, вольфрамовой кислоты и вольфрама из касситерита (оловянного камня). Второй патент, полученный Оксландом в 1857, описывал производство железо-вольфрамовых сплавов, которые составляют основу современных быстрорежущих сталей.

В середине 19 в. предпринимались первые попытки использовать вольфрам в производстве стали, однако долгое время не удавалось внедрить эти разработки в промышленность из-за высокой цены на металл. Возросшая потребность в легированных и высокопрочных сталях привела к запуску производства быстрорежущих сталей на фирме «Вифлеемская Сталь» (Bethlehem Steel). Образцы этих сплавов были впервые представлены в 1900 на Всемирной выставке в Париже.

Технология изготовления вольфрамовых нитей и ее история.

Объемы производства вольфрамовой проволоки имеют небольшую долю среди всех отраслей применения вольфрама, но развитие технологии ее получения сыграло ключевую роль в развитии порошковой металлургии тугоплавких соединений.

С 1878, когда Свон продемонстрировал в Ньюкастле изобретенные им восьми- и шестнадцатисвечевые угольные лампы, шел поиск более подходящего материала для изготовления нитей накаливания. Первая угольная лампа обладала эффективностью всего 1 люмен/ватт, которая была увеличена в следующие 20 лет модификацией методов обработки угля в два с половиной раза. К 1898 светоотдача таких лампочек составляла 3 люмен/ватт. Угольные нити в те времена нагревались пропусканием электрического тока в атмосфере паров тяжелых углеводородов. При пиролизе последних образующийся углерод заполнял поры и неровности нити, придавая ей яркий металлический блеск.

В конце 19 в. фон Вельсбах впервые изготовил металлическую нить для ламп накаливания. Он сделал ее из осмия (Т пл = 2700° С). Осмиевые нити обладали эффективностью 6 люмен/ватт, однако, осмий - редкий и чрезвычайно дорогой элемент платиновой группы, поэтому широкого применения в изготовлении бытовых устройств не нашел. Тантал с температурой плавления 2996° С широко использовался в виде вытянутой проволоки с 1903 по 1911 благодаря работам фон Болтона из фирмы Сименс и Хальске. Эффективность танталовых ламп составляла 7 люмен/ватт.

Вольфрам начал применяться в лампах накаливания в 1904 и вытеснил в этом качестве все остальные металлы к 1911. Обычная лампа накаливания с вольфрамовой нитью обладает свечением 12 люмен/ватт, а лампы, работающие под высоким напряжением - 22 люмен/ватт. Современные флуоресцентные лампы с вольфрамовым катодом имеют эффективность порядка 50 люмен/ватт.

В 1904 на фирме «Сименс-Хальске» попытались применить разработанный для тантала процесс волочения проволоки для более тугоплавких металлов, таких как вольфрам и торий. Жесткость и недостаток ковкости вольфрама не позволили гладко провести процесс. Тем не менее, позже, в 1913-1914, было показано, что расплавленный вольфрам может быть раскатан и вытянут с использованием процедуры частичного восстановления. Электрическую дугу пропускали между вольфрамовым стержнем и частично расплавленной вольфрамовой капелькой, помещенной в графитовый тигель, покрытый изнутри вольфрамовым порошком и находящийся в атмосфере водорода. Тем самым были получены небольшие капли расплавленного вольфрама, около 10 мм в диаметре и 20-30 мм в длину. Хотя и с трудом, но с ними уже можно было работать.

В те же годы Юст и Ханнаман запатентовали процесс изготовления вольфрамовых нитей. Тонкий металлический порошок смешивался с органическим связующим, полученная паста пропускалась через фильеры и нагревалась в специальной атмосфере для удаления связующего, при этом получалась тонкая нить чистого вольфрама.

В 1906-1907 был разработан хорошо известный процесс экструзии, применявшийся до начала 1910-х. Черный вольфрамовый порошок очень тонкого помола смешивался с декстрином или крахмалом до образования пластичной массы. Гидравлическим давлением эта масса продавливалась через тонкие алмазные сита. Получающаяся таким образом нить оказывалась достаточно прочной для того, чтобы быть намотанной на катушки и высушенной. Далее нити разрезались на «шпильки», которые нагревались в атмосфере инертного газа до температуры красного каления для удаления остатков влаги и легких углеводородов. Каждая «шпилька» закреплялась в зажиме и нагревалась в атмосфере водорода до яркого свечения пропусканием электрического тока. Это приводило к окончательному удалению нежелательных примесей. При высоких температурах отдельные маленькие частицы вольфрама сплавляются и образуют однородную твердую металлическую нить. Эти нити эластичны, хотя и хрупки.

В начале 20 в. Юст и Ханнаман разработали другой процесс, отличающийся своей оригинальностью. Угольная нить диаметром 0,02 мм покрывалась вольфрамом путем накаливания в атмосфере водорода и паров гексахлорида вольфрама. Покрытая таким образом нить нагревалась до яркого свечения в водороде при пониженном давлении. При этом вольфрамовая оболочка и углеродное ядро полностью сплавлялись друг с другом, образуя карбид вольфрама. Получающаяся нить имела белый цвет и была хрупкой. Далее нить нагревалась в токе водорода, который взаимодействовал с углеродом, оставляя компактную нить из чистого вольфрама. Нити обладали теми же характеристиками, что и полученные в процессе экструзии.

В 1909 американцу Кулиджу удалось получить ковкий вольфрам без применения наполнителей, а лишь с помощью разумной температурной и механической обработки. Основная проблема в получении вольфрамовой проволоки заключалась в быстром окислении вольфрама при высоких температурах и наличии зернистой структуры в получающемся вольфраме, которая приводила к его хрупкости.

Современное производство вольфрамовой проволоки является сложным и точным технологическим процессом. Исходным сырьем служит порошковый вольфрам, получаемый восстановлением паравольфрамата аммония.

Вольфрамовый порошок, применяемый для производства проволоки, должен иметь высокую чистоту. Обычно смешивают порошки вольфрама различного происхождения, чтобы усреднить качество металла. Смешиваются они в мельницах и во избежание окисления нагретого трением металла в камеру пропускают поток азота. Затем порошок прессуется в стальных пресс-формах на гидравлических или пневматических прессах (5-25 кг/мм 2). В случае использования загрязненных порошков, прессовка получается хрупкой, и для устранения этого эффекта добавляется полностью окисляемое органическое связующее. На следующей стадии производится предварительное спекание штабиков. При нагревании и охлаждении прессовок в потоке водорода их механические свойства улучшаются. Прессовки еще остаются достаточно хрупкими, и их плотность составляет 60-70% от плотности вольфрама, поэтому штабики подвергают высокотемпературному спеканию. Штабик зажимается между контактами, охлаждаемыми водой, и в атмосфере сухого водорода через него пропускается ток для нагрева его почти до температуры плавления. За счет нагревания вольфрам спекается и его плотность возрастает до 85-95% от кристаллического, в то же время увеличиваются размеры зерен, растут кристаллы вольфрама. Затем следует ковка при высокой (1200-1500° С) температуре. В специальном аппарате штабики пропускаются через камеру, которая сдавливается молотом. За одно пропускание диаметр штабика уменьшается на 12%. При ковке кристаллы вольфрама удлиняются, создается фибриллярная структура. После ковки следует протяжка проволоки. Стержни смазываются и пропускаются через сита из алмаза или карбида вольфрама. Степень вытяжки зависит от назначения получаемых изделий. Диаметр получаемой проволоки составляет около 13 мкм.