Проницаемость алюминия. Классификация веществ по значению магнитной проницаемости. Удельная объемная энергия

Магнитная проницаемость - физическая величина , коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией B {\displaystyle {B}} и напряжённостью магнитного поля H {\displaystyle {H}} в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая её состав, состояние, температуру и т. д.).

Впервые встречается в работе Вернера Сименса «Beiträge zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») в 1881 году .

Обычно обозначается греческой буквой μ {\displaystyle \mu } . Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).

В общем, соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как

B → = μ H → , {\displaystyle {\vec {B}}=\mu {\vec {H}},}

и μ {\displaystyle \mu } в общем случае здесь следует понимать как тензор, что в компонентной записи соответствует :

B i = μ i j H j {\displaystyle \ B_{i}=\mu _{ij}H_{j}}

Для изотропных веществ соотношение:

B → = μ H → {\displaystyle {\vec {B}}=\mu {\vec {H}}}

можно понимать в смысле умножение вектора на скаляр (магнитная проницаемость сводится в этом случае к скаляру).

Нередко обозначение μ {\displaystyle \mu } используется не так, как здесь, а именно для относительной магнитной проницаемости (при этом μ {\displaystyle \mu } совпадает с таковым в СГС).

Размерность абсолютной магнитной проницаемости в СИ такая же, как размерность магнитной постоянной, то есть Гн / или / 2 .

Относительная магнитная проницаемость в СИ связана с магнитной восприимчивостью χ соотношением

μ r = 1 + χ , {\displaystyle \mu _{r}=1+\chi ,}

Энциклопедичный YouTube

  • 1 / 5

    Подавляющее большинство веществ относятся либо к классу диамагнетиков ( μ ⪅ 1 {\displaystyle \mu \lessapprox 1} ), либо к классу парамагнетиков ( μ ⪆ 1 {\displaystyle \mu \gtrapprox 1} ). Но ряд веществ - (ферромагнетики), например железо , обладают более выраженными магнитными свойствами.

    У ферромагнетиков вследствие гистерезиса , понятие магнитной проницаемости, строго говоря, неприменимо. Однако в определенном диапазоне изменения намагничивающего поля (чтобы можно было пренебречь остаточной намагниченностью, но до насыщения) можно в лучшем или худшем приближении всё же представить эту зависимость как линейную (а для магнитомягких материалов ограничение снизу может быть и не слишком практически существенно), и в этом смысле величина магнитной проницаемости бывает измерена и для них.

    Магнитные проницаемости некоторых веществ и материалов

    Магнитная восприимчивость некоторых веществ

    Магнитная восприимчивость и магнитная проницаемость некоторых материалов

    Medium Восприимчивость χ m
    (объемная, СИ)
    Проницаемость μ [Гн/м] Относительная проницаемость μ/μ 0 Магнитное поле Максимум частоты
    Метглас (англ. Metglas ) 1,25 1 000 000 при 0.5 Тл 100 kHz
    Наноперм (англ. Nanoperm ) 10 × 10 -2 80 000 при 0.5 Тл 10 kHz
    Мю-металл 2,5 × 10 -2 20 000 при 0.002 Тл
    Мю-металл 50 000
    Пермаллой 1,0 × 10 -2 70 000 при 0.002 Тл
    Электротехническая сталь 5,0 × 10 -3 4000 при 0.002 Тл
    Феррит (никель-цинк) 2,0 × 10 -5 - 8,0 × 10 -4 16-640 100 kHz ~ 1 MHz [ ]
    Феррит (марганец-цинк) >8,0 × 10 -4 640 (и более) 100 kHz ~ 1 MHz
    Сталь 8,75 × 10 -4 100 при 0.002 Тл
    Никель 1,25 × 10 -4 100 - 600 при 0.002 Тл
    Неодимовый магнит 1.05 до 1,2-1,4 Тл
    Платина 1,2569701 × 10 -6 1,000265
    Алюминий 2,22 × 10 -5 1,2566650 × 10 -6 1,000022
    Дерево 1,00000043
    Воздух 1,00000037
    Бетон 1
    Вакуум 0 1,2566371 × 10 -6 (μ 0) 1
    Водород -2,2 × 10 -9 1,2566371 × 10 -6 1,0000000
    Тефлон 1,2567 × 10 -6 1,0000
    Сапфир -2,1 × 10 -7 1,2566368 × 10 -6 0,99999976
    Медь -6,4 × 10 -6
    or -9,2 × 10 -6
    1,2566290 × 10 -6 0,999994

    Конечно, в железе создалось поле с индукцией вместо которые получились бы в воздухе. Поэтому можно сказать, что по сравнению с воздухом железо в 2400 раз более «проницаемо» для магнитного поля.

    Относительной магнитной проницаемостью железа можно назвать отношение магнитных индукций в железе и в воздухе

    если магнитное поле наблюдается внутри одинаковых кольцевых катушек, одна из которых намотана на железном кольце, а другая не содержит никаких ферромагнитных тел.

    При этом, конечно, значения индукции и Вв определяются при одном и том же значении удельного полного тока.

    Магнитная проницаемость одного и того же ферромагнитного материала при различных значениях индукции различна. В самом деле, представим магнитную характеристику, показанную на рис. 3.4, в виде таблицы: в первой строке поставлены значения удельного полного тока , во второй - значения магнитной индукции, наблюдаемой в железе (замкнутое кольцо внутри катушки), в третьей - значения магнитной индукции в такой же кольцевой катушке без ферромагнитных тел, увеличенная в 10 000 раз.

    Первая строка таблицы соответствует опытам, по которым построена магнитная характеристика рис. 3.4. Вторая строка вычислена по формуле

    Значения относительной магнитной проницаемости для разных индукций вычислены по формуле

    Как видно из таблицы, магнитная проницаемость сначала растет, а затем уменьшается. Полученные результаты могут быть изображены графиком, показанным на рис. 3.5.

    Рис. 3.5. Относительная магнитная проницаемость чистого железа в зависимости от удельного полного тока

    Первые исследования магнитных свойств материалов на замкнутых кольцевых образцах и установление характера и зменения проницаемости с полем принадлежат профессору Московского университета А. Г. Столетову. Он подчеркивал, что для развивающейся электротехники знать магнитные свойства стали так же важно, как для строителей паровых машин знать свойства пара.

    Уменьшение относительной магнитной проницаемости с ростом индукции представляет вторую характерную особенность ферромагнитных тел. Сначала они легко намагничиваются; магнитная индукция достигает больших значений при достаточно слабых намагничивающих токах. Однако дальнейшее увеличение магнитной индукции требует все более значительного увеличения тока - создать индукцию выше приблизительно 2,0-2,2 Тл в железе очень трудно. На это указывает пологий ход магнитной характеристики, изображенной на рис. 3.4, в области больших индукций.

    Чтобы увеличить индукцию от 1,65 до нужно увеличить удельный полный ток от 100 до 1000 А. Но для того чтобы увеличить индукцию еще на требуется увеличить намагничивающий ток до 2000 А/см (см. табл. 3.1). При индукции порядка наступает, как говорят, магнитное насыщение.

    Пример 1. В кольцевой катушке с числом витков при средней длине стального сердечника 25 см протекает ток I = 1 А. Магнитный поток в стальном сердечнике, имеющем поперечное сечение оказывается равным

    Если в описанных выше опытах вместо сердечника из железа брать сердечники из других материалов, то также можно обнаружить изменение магнитного потока. Естественнее всего ждать, что наиболее заметный эффект дадут материалы, подобные по своим магнитным свойствам железу, т. е. никель, кобальт и некоторые магнитные сплавы. Действительно, при введении в катушку сердечника из этих материалов увеличение магнитного потока оказывается довольно значительным. Иными словами, можно сказать, что магнитная проницаемость их велика; у никеля, например, может достигать значения 50, у кобальта 100. Все эти материалы с большими значениями объединяют в одну группу ферромагнитных материалов.

    Однако и все остальные «немагнитные» материалы также оказывают некоторое влияние на магнитный поток, хотя влияние это значительно меньше, чем у материалов ферромагнитных. С помощью очень тщательных измерений можно это изменение обнаружить и определить магнитную проницаемость различных материалов. При этом, однако, нужно иметь в виду, что в опыте, описанном выше, мы сравнивали магнитный поток в катушке, полость которой заполнена железом, с потоком в катушке, внутри которой имеется воздух. Пока речь шла о таких сильно магнитных материалах, как железо, никель, кобальт, это не имело значения, так как наличие воздуха очень мало влияет на магнитный поток. Но при исследовании магнитных свойств других веществ, в частности самого воздуха, мы должны, конечно, вести сравнение с катушкой, внутри которой воздуха нет (вакуум). Таким образом, за магнитную проницаемость мы принимаем отношение магнитных потоков в исследуемом веществе и в вакууме . Иными словами, за единицу мы принимаем магнитную проницаемость для вакуума (если , то ).

    Измерения показывают, что магнитная проницаемость всех веществ отлична от единицы, хотя в большинстве случаев это отличие очень мало. Но особенно замечательным оказывается тот факт, что у одних веществ магнитная проницаемость больше единицы, а у других она меньше единицы, т. е. заполнение катушки одними веществами увеличивает магнитный поток, а заполнение катушки другими веществами уменьшает этот поток. Первые из этих веществ называются парамагнитными (), а вторые – диамагнитными (). Как показывает табл. 7, отличие проницаемости от единицы как у парамагнитных, так и у диамагнитных веществ невелико.

    Нужно особенно подчеркнуть, что для парамагнитных и диамагнитных тел магнитная проницаемость не зависит от магнитной индукции внешнего, намагничивающего поля, т. е. представляет собой постоянную величину, характеризующую данное вещество. Как мы увидим § 149, это не имеет места для железа и других сходных с ним (ферромагнитных) тел.

    Таблица 7. Магнитная проницаемость для некоторых парамагнитных и диамагнитных веществ

    Парамагнитные вещества

    Диамагнитные вещества

    Азот (газообразный)

    Водород (газообразный)

    Воздух (газообразный)

    Кислород (газообразный)

    Кислород (жидкий)

    Алюминий

    Вольфрам

    Влияние парамагнитных и диамагнитных веществ на магнитный поток объясняется, так же как и влияние веществ ферромагнитных, тем, что к магнитному потоку, создаваемому током в обмотке катушки, присоединяется поток, исходящий из элементарных амперовых токов. Парамагнитные вещества увеличивают магнитный поток катушки. Это увеличение потока при заполнении катушки парамагнитным веществом указывает на то, что и в парамагнитных веществах под действием внешнего магнитного поля элементарные токи ориентируются так, что направление их совпадает с направлением тока обмотки (рис. 276). Небольшое отличие от единицы указывает лишь на то, что в случае парамагнитных веществ этот добавочный магнитный поток очень невелик, т. е. что парамагнитные вещества намагничиваются очень слабо.

    Уменьшение магнитного потока при заполнении катушки диамагнитным веществом означает, что в этом случае магнитный поток от элементарных амперовых токов направлен противоположно магнитному потоку катушки, т. е. что в диамагнитных веществах под действием внешнего магнитного поля возникают элементарные токи, направленные противоположно токам обмотки (рис. 277). Малость отклонений от единицы и в этом случае указывает на то, что дополнительный поток этих элементарных токов невелик.

    Рис. 277. Диамагнитные вещества внутри катушки ослабляют магнитное поле соленоида. Элементарные токи в них направлены противоположно току в соленоиде

    6. МАГНИТНЫЕ МАТЕРИАЛЫ

    Все вещества являются магнетиками и намагничиваются во внешнем магнитном поле.

    По магнитным свойствам материалы подразделяются на слабомагнитные (диамагнетики и парамагнетики ) и сильномагнитные (ферромагнетики и ферримагнетики ).

    Диамагнетики μ r < 1, значение которой не зависит от напряженности внешнего магнитного поля. Диамагнетиками являются вещества, атомы (молекулы) которых в отсутствие намагничивающего поля имеют магнитный момент равный нулю: водород, инертные газы, большинство органических соединений и некоторые металлы (Cu , Zn , Ag , Au , Hg ), а также Вi , Gа , Sb .

    Парамагнетики – вещества с магнитной проницаемостью μ r > 1, которая в слабых полях не зависит от напряженности внешнего магнитного поля. К парамагнетикам относятся вещества, атомы (молекулы) которых в отсутствие намагничивающего поля обладают магнитным моментом отличным от нуля: кислород, оксид азота, соли железа, кобальта, никеля и редкоземельных элементов, щелочные металлы, алюминий, платина.

    У диамагнетиков и парамагнетиков магнитная проницаемость μ r близка к единице. Применение в технике в качестве магнитных материалов носит ограниченный характер.

    У сильномагнитных материалов магнитная проницаемость значительно больше единицы (μ r >> 1) и зависит от напряженности магнитного поля. К ним относятся: железо, никель, кобальт и их сплавы, а также сплавы хрома и марганца, гадолиний, ферриты различного состава.

    6.1. Магнитные характеристики материалов

    Магнитные свойства материалов оценивают физическими величинами, называемыми магнитными характеристиками.

    Магнитная проницаемость

    Различают относительную и абсолютную магнитные проницаемости вещества (материала), которые между собой связаны соотношением

    μ a = μ o ·μ , Гн/м

    μ o магнитная постоянная, μ o = 4π ·10 -7 Гн/м;

    μ – относительная магнитная проницаемость (безразмерная величина).

    Для описания свойств магнитных материалов применяют относительную магнитную проницаемость μ (чаще называемую магнитная проницаемость) , а для практических расчетов используют абсолютную магнитную проницаемость μ a , вычисляемую по уравнению

    μ a = В /Н ,Гн/м

    Н – напряженность намагничивающего (внешнего) магнитного поля, А/м

    В магнитная индукция поля в магнетике.

    Большая величина μ показывает, что материал легко намагничивается в слабых и сильных магнитных полях. Магнитная проницаемость у большинства магнетиков зависит от напряженности намагничивающего магнитного поля.

    Для характеристики магнитных свойств широко используется безразмерная величина, называемая магнитной восприимчивостью χ .

    μ = 1 + χ

    Температурный коэффициент магнитной проницаемости

    Магнитные свойства вещества зависят от температуры μ = μ (T ) .

    Для описания характера изменения магнитных свойств с температурой используют температурный коэффициент магнитной проницаемости.

    Зависимость магнитной восприимчивости парамагнетиков от температуры T описывается законом Кюри

    где C - постоянная Кюри .

    Магнитные характеристики ферромагнетиков

    Зависимость магнитных свойств ферромагнетиков имеет более сложный характер, показанный на рисунке, и достигает максимума при температуре близкой к Q к .

    Температура, при которой магнитная восприимчивость резко снижается, почти до нуля, носит название температуры Кюри - Q к . При температурах выше Q к процесс намагничивания ферромагнетика нарушается из-за интенсивного теплового движения атомов и молекул и материал перестает быть ферромагнитным и становится парамагнетиком.

    Для железа Q к = 768 ° C , для никеля Q к = 358 ° C , для кобальта Q к = 1131 ° C .

    Выше температуры Кюри зависимость магнитной восприимчивости ферромагнетика от температуры T описывается законом Кюри-Вейса

    Процесс намагничивания сильномагнитных материалов (ферромагнетиков) обладает гистерезисом . Если производить намагничивание размагниченного ферромагнетика во внешнем поле, то он намагничивается по кривой намагничивания B = B (H ) . Если затем, начиная с некоторого значения H начать уменьшать напряженность поля, то индукция B будет уменьшаться с некоторым запаздыванием (гистерезисом ) по отношению к кривой намагничивания. При увеличении поля противоположного направления ферромагнетик размагничивается, затем перемагничивается , и при новой смене направления магнитного поля может вернуться в исходную точку, откуда начинался процесс размагничивания. Получившаяся петля, изображенная на рисунке, называется петлей гистерезиса .

    При некоторой максимальной напряженности Н м намагничивающего поля вещество намагничивается до состояния насыщения, индукция в котором достигает значения В Н , которое называется индукцией насыщения.

    Остаточная магнитная индукция В О наблюдается в ферромагнитном материале, намагниченном до насыщения, при его размагничивании, когда напряженность магнитного поля равна нулю. Для размагничивания образца материала надо, чтобы напряженность магнитного поля изменила свое направление на обратное (- Н ). Напряженность поля Н К , при которой индукция равна нулю, называется коэрцитивной силой (удерживающая сила).

    Перемагничивание ферромагнетика в переменных магнитных полях всегда сопровождается тепловыми потерями энергии, которые обусловлены потерями на гистерезис и динамическими потерями . Динамические потери связаны с вихревыми токами, индуцированными в объеме материала, и зависят от электрического сопротивления материала, уменьшаясь с ростом сопротивления. Потери на гистерезис W в одном цикле перемагничивания определяются площадью петли гистерезиса

    и могут быть вычислены для единицы объема вещества по эмпирической формуле

    Дж/м 3

    где η – коэффициент зависящий от материала, B Н – максимальная индукция, достигаемая в течение цикла, n – показатель степени, равный в зависимости от материала 1,6 ¸ 2.

    Удельные потери энергии на гистерезис Р Г потери, затраченные на перемагничивание единицы массы в единице объема материала за секунду.

    где f – частота переменного тока, T – период колебаний.

    Магнитострикция

    Магнитострикция – явление изменения геометрических размеров и формы ферромагнетика при изменении величины магнитного поля, т.е. при намагничивании. Относительное изменение размеров материала Δ l / l может быть положительным и отрицательным. У никеля магнитострикция меньше нуля и достигает величины 0,004 %.

    В соответствии с принципом Ле Шателье о противодействии системы влиянию внешних факторов, стремящихся изменить это состояние, механическая деформация ферромагнетика, приводящая к изменению его размера должна оказывать влияние на намагничивание этих материалов.

    Если при намагничивании тело испытывает в данном направлении сокращение своих размеров, то приложение механического напряжения сжатия в этом направлении способствует намагничиванию, а растяжение – затрудняет намагничивание.

    6.2. Классификация ферромагнитных материалов

    Все ферромагнитные материалы по поведению в магнитном поле делятся на две группы.

    Магнитомягкие с большой магнитной проницаемостью μ и малой величиной коэрцитивной силы Н К < 10 А /м. Они легко намагничиваются и размагничиваются. Обладают малыми потерями на гистерезис, т.е. узкой петлей гистерезиса.

    Магнитные характеристики зависят от химической чистоты и степени искажения кристаллической структуры. Чем меньше примесей (С, Р , S, О, N ) , тем выше уровень характеристик материала, поэтому необходимо при производстве ферромагнетика их и оксиды удалять, и стараться не искажать кристаллическую структуру материала.

    Магнитотвердые материалы – обладают большой Н К > 0,5 · МА/м и остаточной индукцией (В О ≥ 0,1Т). Им соответствует широкая петля гистерезиса. Они с большим трудом намагничиваются, зато могут несколько лет сохранять магнитную энергию, т.е. служить источником постоянного магнитного поля. Поэтому из них изготовляются постоянные магниты.

    По составу все магнитные материалы делятся на :

    · металлические;

    · неметаллические;

    · магнитодиэлектрики .

    Металлические магнитные материалы - это чистые металлы (железо, кобальт, никель) и магнитные сплавы некоторых металлов.

    К неметаллическим материалам относятся ферриты, получаемые из порошков оксидов железа и других металлов. Их прессуют и обжигают при 1300 – 1500 °С и они превращаются в твердые монолитные магнитные детали. Ферриты, как и металлические магнитные материалы, могут быть магнитомягкими и магнитотвердыми.

    Магнитодиэлектрики это композиционные материалы из 60 – 80 % порошка магнитного материала и 40 – 20 % органического диэлектрика. Ферриты и магнитодиэлектрики имеют большое значение удельного электрического сопротивления (ρ = 10 ÷ 10 8 Ом·м), Высокое сопротивление этих материалов обеспечивает низкие динамические потери энергии в переменных электромагнитных полях и позволяет широко использовать их в высокочастотной технике.

    6.3. Металлические магнитные материалы

    6.3.1. Металлические магнитомягкие материалы

    К металлическим магнитомягким материалам относятся карбонильное железо, пермаллои, альсиферы и низкоуглеродистые кремнистые стали.

    Карбонильное железо получают термическим разложением жидкости пентакарбонила железа Fе ( СО ) 5 с получением частиц чистого порошкообразного железа:

    Fе ( СО ) 5 → + 5 СО,

    при температуре около 200 °С и давлении 15 МПа. Частицы железа имеют сферическую форму размером 1 – 10 мкм. Для освобождения от частиц углерода порошок железа подвергают термической обработке в среде Н 2 .

    Магнитная проницаемость карбонильного железа достигает 20000, коэрцитивная сила составляет 4,5 ¸ 6,2 А /м. Применяют порошок железа для изготовления высокочастотных магнитодиэлектрических сердечников, в качестве наполнителя в магнитных лентах.

    Пермаллои – пластичные железоникелевые сплавы. Для улучшения свойств вводят Мо, Сr , Сu , получая легированные пермаллои. Обладают высокой пластичностью, легко прокатываются в листы и ленты до 1 мкм.

    Если содержание никеля в пермаллое 40 – 50 %, то он называется низконикелевым, если 60 – 80 % – высоконикелевым .

    Пермаллои имеют высокий уровень магнитных характеристик, который обеспечивается не только составом и высокой химической чистотой сплава, но и специальной тепловой вакуумной обработкой. Пермаллои имеют очень высокий уровень начальной магнитной проницаемости от 2000 до 30000 (в зависимости от состава) в области слабых полей, который обусловлен низкой величиной магнитострикции и изотропностью магнитных свойств. Особенно высокие характеристики имеет супермаллой, начальная магнитная проницаемость которого имеет значение 100000, а максимальная достигает 1,5 · 10 6 при B = 0,3 Тл.

    Пермаллои поставляют в виде лент, листов и прутков. Низконикелевые пермаллои применяют для изготовления сердечников дросселей, малогабаритных трансформаторов и магнитных усилителей, высоконикелевые пермаллоидля деталей аппаратуры, работающих на звуковых и сверхзвуковых частотах. Магнитные характеристики пермаллоев стабильны при –60 +60°С.

    Альсиферы нековкие хрупкие сплавы состава Al – Si – Fe , состоящие из 5,5 – 13 % Аl , 9 – 10 % Si , остальное – железо. Альсифер близок по свойствам к пермаллою, но более дешев. Из него изготовляют литые сердечники, отливают магнитные экраны и другие полые детали с толщиной стенок не менее 2 – 3 мм. Хрупкость альсифера ограничивает области его применения. Используя хрупкость альсифера , его размалывают в порошок, который используется в качестве ферромагнитного наполнителя в прессованных высочастотных магнитодиэлектриках (сердечники, кольца).

    Кремнистая низкоуглеродистая сталь (электротехническая сталь) – сплав железа и кремния (0,8 – 4,8 % Si ). Основной магнитомягкий материал массового применения. Она легко прокатывается в листы и ленты 0,05 – 1 мм и является дешевым материалом. Кремний, находящийся в стали в растворенном состоянии, выполняет две функции.

    · Повышая удельное сопротивление стали, кремний вызывает снижение динамических потерь, связанных с вихревыми токами. Сопротивление повышается за счет образования кремнезема SiO 2 в результате протекания реакции

    2 FeO + S i → 2 Fe + SiO 2 .

    · Наличие кремния, растворенного в стали , способствует распаду цементита Fе 3 С – вредной примеси, снижающей магнитные характеристики, и выделению углерода в виде графита. При этом образуется чистое железо, рост кристаллов которого повышает уровень магнитных характеристик стали .

    Введение кремния в сталь в количестве, превышающем 4,8 %, не рекомендуется, так как, способствуя улучшению магнитных характеристик, кремний резко повышает хрупкость стали и снижает ее механические свойства.

    6.3.2. Металлические магнитотвердые материалы

    Магнитотвердые материалы - это ферромагнетики с высокой коэрцитивной силой (более 1 кА/м) и большой величиной остаточной магнитной индукции В О . Применяются для изготовления постоянных магнитов.

    Подразделяются в зависимости от состава, состояния и способа получения на :

    · легированные мартенситные стали;

    · литые магнитотвердые сплавы.

    Легированные мартенситные стали эт о углеродистые стали и стали, легированные Сr , W, Со, Мо . Углеродистые стали быстро стареют и изменяют свои свойства, поэтому редко применяются для изготовления постоянных магнитов. Для изготовления постоянных магнитов используют легированные стали – вольфрамовую и хромистую (Н С ≈ 4800 А /м, В О ≈ 1 Т), которые изготавливаются в виде прутков с различной формой сечения. Кобальтовая сталь обладает более высокой коэрцитивной силой (Н С ≈ 12000 А /м, В О ≈ 1 Т) по сравнению с вольфрамовой и хромистой. Коэрцитивная сила Н С кобальтовой стали растет с увеличением содержания С о .

    Литые магнитотвердые сплавы. Улучшенные магнитные свойства сплавов обусловлены специально подобранным составом и специальной обработкой – охлаждением магнитов после отливки в сильном магнитном поле, а также специальной многоступенчатой тепловой обработкой в виде закалки и отпуска в сочетании с магнитной обработкой, называемой дисперсионным твердением.

    Для изготовления постоянных магнитов находят применение три основных группы сплавов:

    · Железо – кобальт – молибденовый сплав типа ремаллой с коэрцитивной силой Н К = 12 – 18 кА/м.

    · Группа сплавов:

    § медь – никель – железо;

    § медь – никель – кобальт;

    § железо – марганец, легированные алюминием или титаном;

    § железо – кобальт – ванадий (F е – Со – V ).

    Сплав медь – никель – железо называется кунифе (Сu Ni - ). Сплав F е – Со – V (железо – кобальт - ванадий) называется викалой . Сплавы этой группы имеют коэрцитивную силу Н К = 24 – 40 кА/м. Выпускаются в виде проволоки и в листах.

    · Сплавы системы железо – никель – алюминий (F е Ni Аl ), известные ранее под названием сплав альни . Сплавсодержит 20 - 33 % Ni + 11 – 17 % Al , остальное железо. Добавление в сплавы кобальта, меди, титана, кремния, ниобия улучшает их магнитные свойства, облегчает технологию изготовления, обеспечивает повторяемость параметров, улучшает механические свойства. Современная маркировка марки содержит буквы, обозначающие добавляемые металлы (Ю – алюминий, Н – никель, Д – медь, К - кобальт, Т – титан, Б – ниобий, С – кремний), цифры - содержание элемента, буква которого стоит перед цифрой, например, ЮНДК15.

    Сплавы обладают высоким значением коэрцитивной силы Н К = 40 – 140 кА/м и большой запасенной магнитной энергией.

    6.4. Неметаллические магнитные материалы. Ферриты

    Ферриты представляют собой керамические ферромагнитные материалы с малой электронной электропроводностью. Низкая электропроводность в сочетании с высокими магнитными характеристиками позволяет широко использовать ферриты на высоких частотах.

    Изготовляют ферриты из порошкообразной смеси, состоящей из окиси железа и специально подобранных окислов других металлов. Их прессуют, а затем спекают при высоких температурах. Общая химическая формула имеет вид:

    МеО ·Fе 2 О 3 или МеFе 2 О 4 ,

    где Ме символ двухвалентного металла.

    Например,

    ZnO · Fe 2 O 3 или

    NiO · Fe 2 O 3 или NiFe 2 O 4

    Ферриты обладают кубической решеткой типа шпинели MgOAl 2 O 3 - алюмината магния. Не все ферриты обладают магнитными свойствами. Наличие магнитных свойств св язано с расположением ионов металловв кубической решетке шпинели. Так система ZnFe 2 O 4 не обладает ферромагнитными свойствами.

    Ферриты изготовляют по керамической технологии. Исходные порошкообразные окислы металлов измельчают в шаровых мельницах, прессуют и обжигают в печах. Спекшиеся брикеты размалывают в тонкодисперсный порошок, вводят пластификатор, например раствор поливинилового спирта. Из полученной массы прессуют ферритовые изделия – сердечники, кольца, которые обжигают на воздухе при 1000 – 1400 °С. Полученные твердые хрупкие изделия в основном черного цвета можно обрабатывать только шлифованием и полированием.

    Магнитомягкие ферриты

    Магнитомягкие ферриты широко применяют в области высоких частот электронной техники и приборостроении для изготовления фильтров, трансформаторов усилителей низких и высоких частот, антенн радиопередающих и радиоприемных устройств, импульсных трансформаторов, магнитных модуляторов. Промышленностью выпускаются следующие виды магнитомягких ферритов с широким спектром магнитных и электрических свойств: никель – цинковые, марганец – цинковые и литий – цинковые. Верхняя граничная частота применения феррита зависит от их состава и изменяется у разных марок ферритов от 100 кГц до 600 МГц, коэрцитивная сила составляет около 16 А /м.

    Достоинством ферритов является стабильность магнитных характеристик, относительнаяпростота изготовления радиодеталей. Как все ферромагнитные материалы ферриты сохраняют свои магнитные свойства только до температуры Кюри, которая зависит от состава ферритов и колеблется в пределах от 45 ° до 950 °С.

    Магнитотвердые ферриты

    Для изготовления постоянных магнитов используют магнитотвердые ферриты, наибольшее применение имеют ферриты бария (ВаО ·6 Fе 2 О 3 ). Они имеют гексагональную кристаллическую структуру с большой Н К . Ферриты бария представляют собой поликристаллический материал. Могут быть изотропными - одинаковость свойств феррита во всех направлениях обусловлена тем, что кристаллические частицы ориентированы произвольно. Если в процессе прессования магнитов порошкообразную массу подвергнуть воздействию внешнего магнитного поля большой напряженности, то кристаллические частицы феррита будут ориентированы в одном направлении, и магнит будет являться анизотропным.

    Бариевые ферриты отличаются хорошей стабильностью своих характеристик, но чувствительны к изменению температуры и механическим воздействиям. Магниты из бариевых ферритов дешевы.

    6.5. Магнитодиэлектрики

    Магнитодиэлектрики - это композиционные материалы, состоящие из мелкодисперсных частиц магнитомягкого материала, связанных друг с другом органическим или неорганическим диэлектриком. В качестве магнитомягких материалов применяют карбонильное железо, альсифер и некоторые сорта пермаллоев, измельченные до порошкообразного состояния.

    В качестве диэлектриков применяют полистирол, бакелитовые смолы, жидкое стекло и др.

    Назначение диэлектрика не только в том, чтобы соединить частицы магнитного материала, но и изолировать их друг от друга, а, следовательно, резко повысить величину удельного электрического сопротивления магнитодиэлектрика . Удельное электрическое сопротивление r магнитодиэлектриков составляет10 3 – 10 4 Ом × м

    Магнитодиэлектрики применяют для изготовления сердечников высокочастотных узлов радиоаппаратуры. Процесс производства изделий проще, чем из ферритов, т.к. они не нуждаются в высокотемпературной тепловой обработке. Изделия из магнитодиэлектриков отличаются высокой стабильностью магнитных свойств, высоким классом чистоты поверхности и точностью размеров.

    Наиболее высокими магнитными характеристиками обладают магнитодиэлектрики, наполнителем в которых служит молибденовый пермаллой или карбонильное железо.

    Магнитная проницаемость. Магнитные свойства веществ

    Магнитные свойства веществ

    Подобно тому, как электрические свойства вещества характеризуются диэлектрической проницаемостью, магнитные свойства вещества характеризуются магнитной проницаемостью.

    Благодаря тому, что все вещества, находящиеся в магнитном поле, создают собственное магнитное поле, вектор магнитной индукции в однородной среде отличается от вектора в той же точке пространства в отсутствие среды, т. е. в вакууме.

    Отношение называется магнитной проницаемостью среды.

    Итак, в однородной среде магнитная индукция равна:

    Величина m у железа очень велика. В этом можно убедиться на опыте. Если вставить в длинную катушку железный сердечник, то магнитная ин­дукция, согласно формуле (12.1), увеличится в m раз. Сле­довательно, во столько же раз увеличится поток магнитной индукции. При размыкании цепи, питающей намагничи­вающую катушку постоянным током, во второй, небольшой катушке, намотанной поверх основной, возникает индукцион­ный ток, регистрируемый гальванометром (рис. 12.1).

    Если в катушку вставлен железный сердечник, то отклоне­ние стрелки гальванометра при размыкании цепи будет в m раз больше. Измерения показывают, что магнитный поток при внесении в катушку железного сердечника может увеличиться в тысячи раз. Следовательно, магнитная проницаемость железа огромна.

    Существует три основных класса веществ с резко разли­чающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

    Ферромагнетики

    Вещества, у которых, подобно железу, m >> 1, называются ферромагнетиками. Кроме железа, ферромагнетиками явля­ются кобальт и никель, а также ряд редкоземельных элемен­тов и многие сплавы. Важнейшее свойство ферромагнетиков – существование у них остаточного магнетизма. Ферромагнитное вещество может находиться в намагничен­ном состоянии и без внешнего намагничивающего поля.

    Железный предмет (например, стержень), как известно, втя­гивается в магнитное поле, т. е. перемещается в область, где магнитная индукция больше. Соответственно, он притягивает­ся к магниту или электромагниту. Это происходит потому, что элементарные токи в железе ориентируются так, что направ­ление магнитной индукции их поля совпадает с направлением индукции намагничивающего поля. В результате железный стержень превращается в магнит, ближайший полюс которого противоположен полюсу электромагнита. Противоположные же полюса магнитов притягиваются (рис. 12.2).

    Рис. 12.2

    СТОП! Решите самостоятельно: А1–А3, В1, В3.

    Парамагнетики

    Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле. Эти вещества называются парамагнитными . К их числу относятся некоторые ме­таллы (алюминий, натрий, калий, марганец, платина и др.), кислород и многие другие элементы, а также различные рас­творы электролитов.

    Так как парамагнетики втягиваются в поле, то линии ин­дукции создаваемого ими собственного магнитного поля и намагничивающего поля направлены одинаково, поэтому поле усиливается. Таким образом, у них m > 1. Но от единицы m от­личается крайне незначительно, всего на величину порядка 10 –5 ...10 –6 . Поэтому для наблюдения парамагнитных явлений требуются мощные магнитные поля.

    Диамагнетики

    Особый класс веществ представляют собой диамагне­тики , открытые Фарадеем. Они выталкиваются из магнит­ного поля. Если подвесить диамагнитный стерженек возле по­люса сильного электромагнита, то он будет отталкиваться от него. Следовательно, линии индукции созданного им поля на­правлены противоположно линиям индукции намагничиваю­щего поля, т. е. поле ослабляется (рис. 12.3). Соответственно у диамагнетиков m < 1, причем отличается от единицы на вели­чину порядка 10 –6 . Магнитные свойства у диамагнетиков вы­ражены слабее, чем у парамагнетиков.