Основные тригонометрические тождества одного аргумента. Основное тригонометрическое тождество. Тригонометрические тождества преобразования половины угла


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

Универсальная тригонометрическая подстановка

Обзор основных формул тригонометрии завершаем формулами, выражающими тригонометрические функции через тангенс половинного угла. Такая замена получила название универсальной тригонометрической подстановки . Ее удобство заключается в том, что все тригонометрические функции выражаются через тангенс половинного угла рационально без корней.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Примеры тождеств:

\(2(x+5)=2x+10\);
\(a^2-b^2=(a+b)(a-b)\);
\(1-\sin^2⁡x=\cos^2⁡x\).

А вот выражение \(\frac{x^2}{x}=x\) является тождеством только при условии \(x≠0\) (иначе левая часть не существует).

Как доказывать тождество?

Рецепт до одури прост:

Чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».

Например,

\(5=5\);
\(\sin^2⁡x=\sin^2⁡x\);
\(\cos⁡x-4=\cos⁡x-4\).

Для того, чтоб это сделать можно:

  1. Преобразовывать только правую или только левую часть.
  2. Преобразовывать обе части одновременно.
  3. Использовать любые допустимые математические преобразования (например, приводить подобные; раскрывать скобки; переносить слагаемые из одной части в другую, меняя знак; умножать или делить левую и правую часть на одно и то же число или выражение, не равное нулю и т.д.).
  4. Использовать любые математические формулы.

Именно четвертый пункт при доказательстве тождеств используется чаще всего, поэтому все нужно знать, помнить и уметь использовать.

Пример . Доказать тригонометрическое тождество \(\sin⁡2x=2\sin⁡x\cdot \cos{x}\)
Решение :


Пример . Доказать, что выражение \(\frac {\cos^2{t}}{1-\sin⁡{t}}\) \(-\sin{⁡t}=1\) является тождеством.
Решение :

Пример . Доказать тригонометрическое тождество \(1-tg^2 t=\)\(\frac{\cos⁡2t}{\cos^2⁡t}\)
Решение :

\(1-tg^2 t=\)\(\frac{\cos⁡2t}{\cos^2⁡t}\)

Здесь будем преобразовывать только правую часть, стремясь свести ее к левой. Левую же оставляем неизменной. Вспоминаем .

\(1-tg^2 t=\)

Теперь сделаем почленное деление в дроби (т.е. применим в обратную сторону): \(\frac{a+c}{b}\) \(=\) \(\frac{a}{b}\) \(+\)\(\frac{c}{b}\)

\(1-tg^2 t=\)\(\frac{\cos^2⁡t}{\cos^2⁡t}\) \(-\)\(\frac{\sin^2⁡t}{\cos^2⁡t}\)

Первую дробь правой части сократим, а ко второй применим : \(\frac{a^n}{b^n}\) \(=\)\((\frac{a}{b})^n\) .

\(1-tg^2 t=1-\)\((\frac{\sin⁡t}{\cos⁡t})^2\)

Ну, а синус деленный на косинус равен того же угла:

\(\frac{\sin⁡x}{\cos⁡x}\) \(=tg x\)

\(1-tg^2 t=1-tg^2 t\)

Пример . Доказать тригонометрическое тождество \(=ctg(π+t)-1\)
Решение :

\(\frac{\cos⁡2t}{\sin⁡t\cdot\cos⁡t+\sin^2⁡t}\) \(=ctg(π+t)-1\)

Здесь будем преобразовывать обе части:
- в левой: преобразуем \(\cos⁡2t\) по формуле двойного угла;
- а в правой \(ctg(π+t)\) по .

\(\frac{\cos^2⁡t-\sin^2⁡t}{\sin⁡t\cdot\cos⁡t+\sin^2⁡t}\) \(=ctg\:t-1\)

Теперь работаем только с левой частью.
В числителе воспользуемся , в знаменателе за скобку синус.

\(\frac{(\cos⁡t-\sin{t})(\cos⁡t+\sin{t})}{\sin⁡t(\cos⁡t+\sin⁡{t})}\) \(=ctg\:t-1\)

Сократим дробь на \(\cos{⁡t}+\sin{⁡t}\).

\(\frac{\cos⁡t-\sin{t}}{\sin⁡t}\) \(=ctg\:t-1\)

Почленно разделим дробь, превратив ее в две отдельные дроби.

\(\frac{\cos⁡t}{\sin{t}}-\frac{\sin{t}}{\sin{t}}\) \(=ctg\:t-1\)

Первая дробь это , а вторая равна единице.

\(ctg\:t-1=ctg\:t-1\)

Левая часть равна правой, тождество доказано.

Как видите, все довольно несложно, но надо знать все формулы и свойства.

Как доказать основное тригонометрическое тождество

Два простых способа вывести формулу \(\sin^2x+\cos^2x=1\). Нужно знать только теорему Пифагора и определение синуса и косинуса.

Ответы на часто задаваемые вопросы:

Вопрос: Как определить, что в тождестве надо преобразовывать – левую часть, правую или обе вместе?
Ответ: Нет никакой разницы – в любом случае вы получите один и тот же результат. Например, в третьем примере мы легко могли бы получить из левой части \(1-tg^2 t\) правую \(\frac{cos⁡2t}{cos^2⁡t}\) (попробуйте сделать это сами). Или преобразовывать обе, с тем чтоб они «встретились посередине», где-то в районе \(\frac{\cos^2⁡t-\sin^2⁡t}{\cos^2⁡t}\) \(=\)\(\frac{\cos^2⁡t-\sin^2⁡t}{\cos^2⁡t}\) . Поэтому вы можете доказывать любым удобным вам способом. Какую «тропинку» видите – по той и идите. Главное только – преобразовывайте «законно», то есть понимайте на основании какого свойства, правила или формулы вы делаете очередное преобразование.


В этой статье мы всесторонне рассмотрим . Основные тригонометрические тождества представляют собой равенства, устанавливающие связь между синусом, косинусом, тангенсом и котангенсом одного угла, и позволяют находить любую из этих тригонометрических функций через известную другую.

Сразу перечислим основные тригонометрические тождества, которые разберем в этой статье. Запишем их в таблицу, а ниже дадим вывод этих формул и приведем необходимые пояснения.

Навигация по странице.

Связь между синусом и косинусом одного угла

Иногда говорят не об основных тригонометрических тождествах, перечисленных в таблице выше, а об одном единственном основном тригонометрическом тождестве вида . Объяснение этому факту достаточно простое: равенства получаются из основного тригонометрического тождества после деления обеих его частей на и соответственно, а равенства и следуют из определений синуса, косинуса, тангенса и котангенса . Подробнее об этом поговорим в следующих пунктах.

То есть, особый интерес представляет именно равенство , которому и дали название основного тригонометрического тождества.

Прежде чем доказать основное тригонометрическое тождество, дадим его формулировку: сумма квадратов синуса и косинуса одного угла тождественно равна единице. Теперь докажем его.

Основное тригонометрическое тождество очень часто используется при преобразовании тригонометрических выражений . Оно позволяет сумму квадратов синуса и косинуса одного угла заменять единицей. Не менее часто основное тригонометрическое тождество используется и в обратном порядке: единица заменяется суммой квадратов синуса и косинуса какого-либо угла.

Тангенс и котангенс через синус и косинус

Тождества, связывающие тангенс и котангенс с синусом и косинусом одного угла вида и сразу следуют из определений синуса, косинуса, тангенса и котангенса. Действительно, по определению синус есть ордината y, косинус есть абсцисса x, тангенс есть отношение ординаты к абсциссе, то есть, , а котангенс есть отношение абсциссы к ординате, то есть, .

Благодаря такой очевидности тождеств и часто определения тангенса и котангенса дают не через отношение абсциссы и ординаты, а через отношение синуса и косинуса. Так тангенсом угла называют отношение синуса к косинусу этого угла, а котангенсом – отношение косинуса к синусу.

В заключение этого пункта следует отметить, что тождества и имеют место для всех таких углов , при которых входящие в них тригонометрические функции имеют смысл. Так формула справедлива для любых , отличных от (иначе в знаменателе будет нуль, а деление на нуль мы не определяли), а формула - для всех , отличных от , где z - любое .

Связь между тангенсом и котангенсом

Еще более очевидным тригонометрическим тождеством, чем два предыдущих, является тождество, связывающее тангенс и котангенс одного угла вида . Понятно, что оно имеет место для любых углов , отличных от , в противном случае либо тангенс, либо котангенс не определены.

Доказательство формулы очень просто. По определению и , откуда . Можно было доказательство провести и немного иначе. Так как и , то .

Итак, тангенс и котангенс одного угла, при котором они имеют смысл, есть .

Тригонометрические тождества - это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

\[ \sin^{2}\alpha + \cos^{2} \alpha = 1 \]

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha}, \enspace ctg \alpha = \dfrac{\cos \alpha}{\sin \alpha} \]

\[ tg \alpha \cdot ctg \alpha = 1 \]

Зависимость между синусом и косинусом

\[ \sin^{2} \alpha+\cos^{2} \alpha=1 \]

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

\[ tg \alpha = \dfrac{\sin \alpha}{\cos \alpha},\enspace ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \]

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой \(\dfrac{y}{x}=\dfrac{\sin \alpha}{\cos \alpha} \) , а отношение \(\dfrac{x}{y}=\dfrac{\cos \alpha}{\sin \alpha} \) - будет являться котангенсом.

Добавим, что только для таких углов \(\alpha \) , при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества , .

Например: \(tg \alpha = \dfrac{\sin \alpha}{\cos \alpha} \) является справедливой для углов \(\alpha \) , которые отличны от \(\dfrac{\pi}{2}+\pi z \) , а \(ctg \alpha=\dfrac{\cos \alpha}{\sin \alpha} \) - для угла \(\alpha \) , отличного от \(\pi z \) , \(z \) - является целым числом.

Зависимость между тангенсом и котангенсом

\[ tg \alpha \cdot ctg \alpha=1 \]

Данное тождество справедливо только для таких углов \(\alpha \) , которые отличны от \(\dfrac{\pi}{2} z \) . Иначе или котангенс или тангенс не будут определены.

Опираясь на вышеизложенные пункты, получаем, что \(tg \alpha = \dfrac{y}{x} \) , а \(ctg \alpha=\dfrac{x}{y} \) . Отсюда следует, что \(tg \alpha \cdot ctg \alpha = \dfrac{y}{x} \cdot \dfrac{x}{y}=1 \) . Таким образом, тангенс и котангенс одного угла, при котором они имеют смысл, являются взаимно обратными числами.

Зависимости между тангенсом и косинусом, котангенсом и синусом

\(tg^{2} \alpha + 1=\dfrac{1}{\cos^{2} \alpha} \) - сумма квадрата тангенса угла \(\alpha \) и \(\alpha \) , отличных от \(\dfrac{\pi}{2}+ \pi z \) .

\(1+ctg^{2} \alpha=\dfrac{1}{\sin^{2}\alpha} \) - сумма \(\alpha \) , равняется обратному квадрату синуса данного угла. Данное тождество справедливо для любого \(\alpha \) , отличного от \(\pi z \) .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!