Ускорение тела может показать. Как найти ускорение - wikiHow

Скорости тела при его движении за единицу времени:

Единицей ускорения в Международной системе единиц (СИ) служит метр в секунду за секунду (m/s 2 , м/с 2).

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Рассмотрим движение автомобиля. Трогаясь с места, он увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля - автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами - это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчета.

Равнопеременное движение точки - это движение с постоянным ускорением,

Под словом равнопеременное понимают:

1. Равноускоренное движение - если модуль скорости увеличивается, т.е. ускорение параллельно скорости - ,

2. Равнозамедленное движение - если модуль скорости уменьшается, т.е. ускорение антипараллельно скорости: .

Поскольку ускорение равнопеременного движения постоянно, оно равно изменению скорости за любой конечный интервал времени:

где - скорость в начальный момент времени, принятый за нуль; - текущее значение скорости (в момент времени t ). Формула для определения ускорения из состояния покоя (равноускоренное движение, начальная скорость равна нулю: имеет вид:

Если же нулю равна не начальная, а конечная скорость ( торможение при равнозамедленном движении), то формула ускорения принимает вид:

При движении по криволинейной траектории изменяется не только модуль скорости, но и ее направление. В этом случае вектор ускорения представляют в виде двух составляющих: тангенциальной - по касательной к траектории движения, и нормальной - перпендикулярно траектории

В соответствии с этим проекцию ускорения на касательную к траектории называют касательным или тангенциальным ускорением , а проекцию на нормаль - нормальным или центростремительным ускорением .

Тангенциальное (касательное) ускорение - это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Направление вектора тангенциального ускорения совпадает с направлением линейной скорости или противоположно ему. То есть, вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение - это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть, вектор нормального ускорения перпендикулярен линейной скорости движения. Нормальное ускорение характеризует изменение скорости по направлению. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

Как изменяются показания спидометра в начале движения и при торможении автомобиля?
Какая физическая величина характеризует изменение скорости?

При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо жеодновременно как по модулю, так и по направлению.

Скорость шайбы, скользящей по льду, уменьшается с течением времени до полной остановки. Если взять в руки камень и разжать пальцы, то при падении камня его скорость постепенно нарастает. Скорость любой точки окружности точильного круга при неизменном числе оборотов в единицу времени меняется только по направлению, оставаясь постоянной по модулю (рис 1.26). Если бросить камень под углом к горизонту, то его скорость будет меняться и по модулю, и по направлению.

Изменение скорости тела может происходить как очень быстро (движение пули в канале ствола при выстреле из винтовки), так и сравнительно медленно (движение поезда при его отправлении).

Физическая величина, характеризующая быстроту изменения скорости, называется ускорением .

Рассмотрим случай криволинейного и неравномерного движения точки. В этом случае её скорость с течением времени изменяется как по модулю, так и по направлению. Пусть в некоторый момент времени t точка занимает положение М и имеет скорость (рис. 1.27). Спустя промежуток времени Δt точка займёт положение М 1 и будет иметь скорость 1 . Изменение скорости за время Δt 1 равно Δ 1 = 1 - . Вычитание вектора можно произвести путём прибавления к вектору 1 вектора (-):

Δ 1 = 1 - = 1 + (-).

Согласно правилу сложения векторов вектор изменения скорости Δ 1 направлен из начала вектора 1 в конец вектора (-), как это показано на рисунке 1.28.

Поделив вектор Δ 1 на промежуток времени Δt 1 получим вектор, направленный так же, как и вектор изменения скорости Δ 1 . Этот вектор называют средним ускорением точки за промежуток времени Δt 1 . Обозначив его через cр1 , запишем:


По аналогии с определением мгновенной скорости определим мгновенное ускорение . Для этого найдём теперь средние ускорения точки за всё меньшие и меньшие промежутки времени:

При уменьшении промежутка времени Δt вектор Δ уменьшается по модулю и меняется по направлению (рис. 1.29). Соответственно средние ускорения также меняются по модулю и направлению. Но при стремлении промежутка времени Δt к нулю отношение изменения скорости к изменению времени стремится к определённому вектору как к своему предельному значению. В механике эту величину называют ускорением точки в данный момент времени или просто ускорением и обозначают .

Ускорение точки - это предел отношения изменения скорости Δ к промежутку времени Δt, в течение которого это изменение произошло, при стремлении Δt к нулю.

Ускорение направлено так, как направлен вектор изменения скорости Δ при стремлении промежутка времени Δt к нулю. В отличие от направления скорости, направление вектора ускорения нельзя определить, зная траекторию точки и направление движения точки по траектории. В дальнейшем на простых примерах мы увидим, как можно определить направление ускорения точки при прямолинейном и криволинейном движениях.

В общем случае ускорение направлено под углом к вектору скорости (рис. 1.30). Полное ускорение характеризует изменение скорости и по модулю, и по направлению. Часто полное ускорение считается равным векторной сумме двух ускорений - касательного ( к) и центростремительного ( цс). Касательное ускорение к характеризует изменение скорости по модулю и направлено по касательной к траектории движения. Центростремительное ускорение цс характеризует изменение скорости по направлению и перпендикулярно касательной, т. е. направлено к центру кривизны траектории в данной точке. В дальнейшем мы рассмотрим два частных случая: точка движется по прямой и скорость изменяется только по модулю; точка движется равномерно по окружности и скорость изменяется только по направлению.

Единица ускорения.

Движение точки может происходить как с переменным, так и с постоянным ускорением. Если ускорение точки постоянно, то отношение изменения скорости к промежутку времени, за которое это изменение произошло, будет одним и тем же для любого интервала времени. Поэтому обозначив через Δt некоторый произвольный промежуток времени, а через Δ - изменение скорости за этот промежуток, можно записать:

Так как промежуток времени Δt - величина положительная, то из этой формулы следует, что если ускорение точки с течением времени не изменяется, то оно направлено так же, как и вектор изменения скорости. Таким образом, если ускорение постоянно, то его можно истолковать как изменение скорости в единицу времени. Это позволяет установить единицы модуля ускорения и его проекций.

Запишем выражение для модуля ускорения:

Отсюда следует, что:
модуль ускорения численно равен единице, если за единицу времени модуль вектора изменения скорости изменяется на единицу.
Если время измерено в секундах, а скорость - в метрах в секунду, то единица ускорения - м/с 2 (метр на секунду в квадрате).

Ускорение характеризует быстроту изменения скорости движущегося тела. Если скорость тела остается постоянной, то оно не ускоряется. Ускорение имеет место только в том случае, когда скорость тела меняется. Если скорость тела увеличивается или уменьшается на некоторую постоянную величину, то такое тело движется с постоянным ускорением. Ускорение измеряется в метрах в секунду за секунду (м/с 2) и вычисляется по значениям двух скоростей и времени или по значению силы, приложенной к телу.

Шаги

Вычисление среднего ускорения по двум скоростям

    Формула для вычисления среднего ускорения. Среднее ускорение тела вычисляется по его начальной и конечной скоростям (скорость – это быстрота передвижения в определенном направлении) и времени, которое необходимо телу для достижения конечной скорости. Формула для вычисления ускорения: a = Δv / Δt , где а – ускорение, Δv – изменение скорости, Δt – время, необходимое для достижения конечной скорости.

    Определение переменных. Вы можете вычислить Δv и Δt следующим образом: Δv = v к - v н и Δt = t к - t н , где v к – конечная скорость, v н – начальная скорость, t к – конечное время, t н – начальное время.

    • Так как ускорение имеет направление, всегда вычитайте начальную скорость из конечной скорости; в противно случае направление вычисленного ускорения будет неверным.
    • Если в задаче начальное время не дано, то подразумевается, что t н = 0.
  1. Найдите ускорение при помощи формулы. Для начала напишите формулу и данные вам переменные. Формула: . Вычтите начальную скорость из конечной скорости, а затем разделите результат на промежуток времени (изменение времени). Вы получите среднее ускорение за данный промежуток времени.

    • Если конечная скорость меньше начальной, то ускорение имеет отрицательное значение, то есть тело замедляется.
    • Пример 1: автомобиль разгоняется с 18,5 м/с до 46,1 м/с за 2,47 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (v к - v н)/(t к - t н)
      • Напишите переменные: v к = 46,1 м/с, v н = 18,5 м/с, t к = 2,47 с, t н = 0 с.
      • Вычисление: a = (46,1 - 18,5)/2,47 = 11,17 м/с 2 .
    • Пример 2: мотоцикл начинает торможение при скорости 22,4 м/с и останавливается через 2,55 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (v к - v н)/(t к - t н)
      • Напишите переменные: v к = 0 м/с, v н = 22,4 м/с, t к = 2,55 с, t н = 0 с.
      • Вычисление: а = (0 - 22,4)/2,55 = -8,78 м/с 2 .

Вычисление ускорения по силе

  1. Второй закон Ньютона. Согласно второму закону Ньютона тело будет ускоряться, если силы, действующие на него, не уравновешивают друг друга. Такое ускорение зависит от результирующей силы, действующей на тело. Используя второй закон Ньютона, вы можете найти ускорение тела, если вам известна его масса и сила, действующая на это тело.

    • Второй закон Ньютона описывается формулой: F рез = m x a , где F рез – результирующая сила, действующая на тело, m – масса тела, a – ускорение тела.
    • Работая с этой формулой, используйте единицы измерения метрической системы, в которой масса измеряется в килограммах (кг), сила в ньютонах (Н), а ускорение в метрах в секунду за секунду (м/с 2).
  2. Найдите массу тела. Для этого положите тело на весы и найдите его массу в граммах. Если вы рассматриваете очень большое тело, поищите его массу в справочниках или в интернете. Масса больших тел измеряется в килограммах.

    • Для вычисления ускорения по приведенной формуле необходимо преобразовать граммы в килограммы. Разделите массу в граммах на 1000, чтобы получить массу в килограммах.
  3. Найдите результирующую силу, действующую на тело. Результирующая сила не уравновешивается другими силами. Если на тело действуют две разнонаправленные силы, причем одна из них больше другой, то направление результирующей силы совпадает с направлением большей силы. Ускорение возникает тогда, когда на тело действует сила, которая не уравновешена другими силами и которая приводит к изменению скорости тела в направлении действия этой силы.

    Преобразуйте формулу F = ma так, чтобы вычислить ускорение. Для этого разделите обе стороны этой формулы на m (массу) и получите: a = F/m. Таким образом, для нахождения ускорения разделите силу на массу ускоряющегося тела.

    • Сила прямо пропорциональна ускорению, то есть чем больше сила, действующая на тело, тем быстрее оно ускоряется.
    • Масса обратно пропорциональна ускорению, то есть чем больше масса тела, тем медленнее оно ускоряется.
  4. Вычислите ускорение по полученной формуле. Ускорение равно частному от деления результирующей силы, действующей на тело, на его массу. Подставьте данные вам значения в эту формулу, чтобы вычислить ускорение тела.

    • Например: сила, равная 10 Н, действует на тело массой 2 кг. Найдите ускорение тела.
    • a = F/m = 10/2 = 5 м/с 2

Проверка ваших знаний

  1. Направление ускорения. Научная концепция ускорения не всегда совпадает с использованием этой величины в повседневной жизни. Помните, что у ускорения есть направление; ускорение имеет положительное значение, если оно направлено вверх или вправо; ускорение имеет отрицательное значение, если оно направлено вниз или влево. Проверьте правильность вашего решения, основываясь на следующей таблице:

  2. Пример: игрушечная лодка массой 10 кг движется на север с ускорением 2 м/с 2 . Ветер, дующий в западном направлении, действует на лодку с силой 100 Н. Найдите ускорение лодки в северном направлении.
  3. Решение: так как сила перпендикулярна направлению движения, то она не влияет на движение в этом направлении. Поэтому ускорение лодки в северном направлении не изменится и будет равно 2 м/с 2 .
  4. Результирующая сила. Если на тело действуют сразу несколько сил, найдите результирующую силу, а затем приступайте к вычислению ускорения. Рассмотрим следующую задачу (в двумерном пространстве):

    • Владимир тянет (справа) контейнер массой 400 кг с силой 150 Н. Дмитрий толкает (слева) контейнер с силой 200 Н. Ветер дует справа налево и действует на контейнер с силой 10 Н. Найдите ускорение контейнера.
    • Решение: условие этой задачи составлено так, чтобы запутать вас. На самом деле все очень просто. Нарисуйте схему направления сил, так вы увидите, что сила в 150 Н направлена вправо, сила в 200 Н тоже направлена вправо, а вот сила в 10 Н направлена влево. Таким образом, результирующая сила равна: 150 + 200 - 10 = 340 Н. Ускорение равно: a = F/m = 340/400 = 0,85 м/с 2 .

Ускорение – это изменение скорости. В любой точке траектории ускорение задается не только изменением абсолютного значения скорости, но и ее направления. Ускорение определяется как предел отношении прироста скорости к интервалу времени, за которое этот прирост произошел. Тангенциальное и центростремительное ускорение называется изменение скорости тела за единицу времени. Математически ускорение определяется как производная от скорости по времени.

Поскольку скорость – производная от координаты, то ускорение можно записать, как вторую производную от координаты.

Движение тела, при котором ускорение не меняется ни по величине, ни по направлению, называется равноускоренным движением. В физике термин ускорения используется и в тех случаях, когда скорость тела не увеличивается, а уменьшается, то есть тело замедляется. При замедлении вектор ускорения направлен против движения, то есть противоположный вектору скорости.
Ускорение – одно из базовых понятий классической механики. Оно объединяет между собой кинематику и динамику. Зная ускорение, а также начальные положения и скорости тел, можно предсказать, как тела будут двигаться дальше. С другой стороны, значение ускорения определяется законами динамики через силы, действующие на тела.
Ускорение обозначается обычно латинской буквой a (от англ. Acceleration) и его абсолютная величина измеряется в системе СИ в метрах за квадратную секунду (м / с 2). В системе СГС единица измерения ускорения сантиметр в секунду в квадрате (см / с 2). Часто ускорение также измеряют, выбирая за единицу ускорение свободного падения, которое обозначают латинской буквой g, то есть говорят, что ускорение составляет, например, 2g.
Ускорение векторная величина. Его направление не всегда совпадает с направлением скорости. В случае вращения вектор ускорения перпендикулярен к вектору скорости. В общем случае вектор ускорения можно разложить на две составляющие. Составляющая вектора ускорения, которая направлена параллельно вектору скорости, а, следовательно, вдоль касательной к траектории называется тангенциальным ускорением. Составляющая вектора ускорения, направленная перпендикулярно вектору скорости, а, следовательно, вдоль нормали к траектории, называется нормальным ускорением.

.

Первый член в этой формуле задает тангенциальное ускорение, второй – нормальное или центростремительное. Изменение направления единичного вектора всегда перпендикулярна этого вектора, поэтому второй член в этой формуле нормальный к первому.
Ускорение центральное понятие для классической механики. Оно является результатом воздействия на тело сил. По второму закону Ньютона ускорение возникает в результате действия на тело сил:

Где m – масса тела, – Равнодействующая всех сил, действующих на это тело.
Если на тело не действуют никакие силы, или же действие всех сил на него уравновешена, то такое тело движется без ускорения, т.е. с постоянной скоростью.
При одинаковой силе, действующей на различные тела, ускорение тела с меньшей массой будет больше, и, соответственно, ускорения массивного тела – меньше.
Если известна зависимость ускорения материальной точки от времени , То ее скорость определяется интегрированием:

,

Где – Скорость точки в начальный момент времени t 0.
Зависимость ускорения от времени можно определить из законов динамики, если известны силы, действующие на материальную точку. Для однозначного определения скорости нужно знать ее значение в начальный момент.
Для равноускоренного движения интегнування дает:

Соответственно, повторным интегрированием можно найти зависимость радиус-вектора материальной точки от времени, если известно его значение в начальный момент :

.

Для равноускоренного движения:

.

Если тело движется по окружности с постоянной угловой скоростью?, то его ускорение направлено к центру круга и равен по абсолютной величине

,

Где R – радиус окружности, v = ? R – скорость тела.
В векторном записи:

Где – Радиус-вектор. .
Знак минус означает, что ускорение направлено к центру круга.
В теории относительности движение с переменной скоростью тоже характеризуется определенной величиной, аналогичной ускорению, но в отличие от обычного ускорения 4-вектор ускорения является второй производной от 4-вектора координат не по времени, а по пространственно-временном интервала.

.

4-вектор ускорения всегда «перпендикулярный» 4-скорости

Особенностью движения в теории относительности является то, что скорость тела никогда не может превысить значение скорости света. Даже в случае, если на тело будет действовать стала сила, его ускорение уменьшается с ростом скорости и стремится к нулю при приближении к скорости света.
Максимальное ускорение твердого тела, удалось получить в лабораторных условиях, составляло 10 10 g. Для опыта ученые применили так называемую Z-машина (Z Machine), которая создает чрезвычайно мощный импульс магнитного поля, ускоряет в специальном канале снаряд – алюминиевую пластинку размером 30 x 15 мм и толщиной 0,85 мм. Скорость снаряда составляла примерно 34 км / с (в 50 раз быстрее пули).