Kvant. Теорема Гаусса. Московский государственный университет печати Теорема гаусса физика

Вычисление напряженности поля большой системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно существенно упростить, используя теорему Гаусса. Эта теорема определяет поток вектора напряженности электрического поля через произвольную замкнутую поверхность.

Для произвольной замкнутой поверхности S поток вектора напряженности через эту поверхность определяется выражением

(1.23)

где проекция вектора на нормаль к площадке dS (рис. 1.10); вектор, модуль которого равен dS , а направление совпадает с направлением нормали к площадке ().

Рассмотрим сферическую поверхность радиуса r , охватывающую точечный заряд q , находящийся в ее центре (рис. 1.11). В соответствии с формулой (1.23) поток вектора напряженности сквозь эту поверхность будет равен:

Этот результат справедлив для замкнутой поверхности любой формы: если окружить рассматриваемую сферу произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Рассмотрим теперь общий случай произвольной замкнутой поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции напряженность поля, создаваемого всеми зарядами, равна векторной сумме напряженностей полей, обусловленных каждым зарядом в отдельности; поэтому поток вектора напряженности результирующего поля будет равен:

Согласно (1.24) каждый из интегралов, стоящий под знаком суммы, равен . Следовательно,

(1.25)

т.е. поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на электрическую постоянную.

Применим теорему Гаусса для определения напряженности поля равномерно заряженной бесконечной плоскости. В этом случае ее поверхностная плотность заряда

одинакова в любом месте плоскости. Это означает, что линии напряженности перпендикулярны плоскости в любой точке, т.е. поле заряженной плоскости однородно (рис. 1.12).

Мысленно выделим в пространстве цилиндр, ось которого перпендикулярна плоскости и одно из оснований проходит через интересующую нас точку. Согласно теореме Гаусса,

С другой стороны, так как линии напряженности пересекают только основания цилиндра, поток вектора можно выразить через напряженность электрического поля у обоих оснований цилиндра, т.е.

Приведем (без вывода) выражения для расчета напряженности электростатического поля, образованного некоторыми другими заряженными телами.

Определим поток напряженности электростати­ческого поля зарядов q 1 ,q 2 ,...q n в вакууме (e=1) через произвольную замкнутую поверхность, окружающую эти заряды.

Рассмотрим сначала случай сферической повер­х­ности радиусом R, окружающей один заряд +q, нахо­дящийся в ее центре (рис.1.7).

, где - есть интеграл по замкнутой поверхности сферы. Во всех точках сферы модуль вектора одинаков, а сам он направлен перпендикулярно поверхности. Следовательно . Площадь поверхности сферы равна . Отсюда следует, что

.

Полученный результат будет справедлив и для поверхности S¢ произвольной формы, так как ее пронизывает такое же количество силовых линий.

На рисунке 1.8 представлена произвольная замкнутая поверхность, охватываю­щая заряд q>0. Некоторые линии напряженности то выходят из поверхности, то вхо­дят в нее. Для всех линий напряженности число пересечений с поверхностью являет­ся нечетным.

Как отмечалось в предыдущем параграфе, линии напря­женности, выходя­щие из объема, ограниченного замкнутой поверхностью, соз­дают положительный поток Ф е; линии же, входящие в объем, создают отрицательный поток -Ф е. Потоки линий при входе и выходе компенсируются. Таким образом, при расчете суммар­ного потока через всю поверхность следует учитывать лишь одно (не скомпенсированное) пересечение замкнутой поверхности каждой линией напряженности.

Если заряд q не охватывается замкнутой поверхностью S, то количество силовых линий, входящих в данную поверх­ность и выходящих из нее, одинаково (рис.1.9). Суммарный поток вектора через такую поверхность равен нулю: Ф Е =0.

Рассмотрим самый общий случай поверхности про­извольной формы, охватывающей n зарядов. По принципу суперпозиции электростатических полей напряженность , создаваемая зарядами q 1 ,q 2 ,...q n равна векторной сумме напряженностей, создавае­мых каждым зарядом в отдельности: . Проекция вектора - результирующей на­пряженности поля на направление нормали к пло­щадке dS равна алгебраической сумме проекций всех векторов на это направле­ние: ,

Поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заря­дов, охватываемых этой поверхностью, деленной на электрическую постоян­ную e 0 . Эта формулировка представляет собой теорему К.Гаусса.

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью , различной в разных местах пространства. Тогда суммарный заряд объема V, охватываемого замкнутой поверхностью S равен и теорему Гаусса следует записать в виде .

Теорема Гаусса представляет значительный практический интерес: с ее помо­щью можно определить напряженности полей, создаваемых заряженными телами различной формы.

Электростатическое поле наглядно можно изобразить с помощью силовых линий (линий напряженности). Силовыми линиями называют кривые, касательные к которым в каждой точке совпадают с вектором напряженности Е .

Силовые линии являются условным понятием и реально не существуют. Силовые линии одиночного отрицательного и одиночного положительного зарядов изображены на рис. 5 - это радиальные прямые, выходящие от положительного заряда или идущие к отрицательному заряду.

Если густота и направление силовых линий по всему объему поля сохраняются неизменными, такое электростатическое поле считается однородным (выделение">число линий должно быть численно равно напряженности поля Е .

Число силовых линий пометка">dS, перпендикулярную к ним, определяет поток вектора напряженности электростатического поля:

формула" src="http://hi-edu.ru/e-books/xbook785/files/17-1.gif" border="0" align="absmiddle" alt=" - проекция вектора Е на направление нормали n к площадке dS (рис. 6 ).

Соответственно поток вектора Е сквозь произвольную замкнутую поверхность S

пометка">S не только величина, но и знак потока могут меняться:

1) при формула" src="http://hi-edu.ru/e-books/xbook785/files/17-4.gif" border="0" align="absmiddle" alt="

3) при выделение">Найдем поток вектора Е сквозь сферическую поверхность S, в центре которой находится точечный заряд q.

В этом случае пометка">Е и n во всех точках сферической поверхности совпадают.

С учетом напряженности поля точечного заряда формула" src="http://hi-edu.ru/e-books/xbook785/files/18-2.gif" border="0" align="absmiddle" alt=" получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=" - алгебраическая величина, зависящая от знака заряда. Например, при q <0 линии Е направлены к заряду и противоположны направлению внешней нормали n ..gif" border="0" align="absmiddle" alt=" вокруг заряда q имеет произвольную форму. Очевидно, что поверхность пометка">Е, что и поверхность S. Следовательно, поток вектора Е сквозь произвольную поверхность формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=".

Если заряд будет находиться вне замкнутой поверхности, то, очевидно, сколько линий войдет в замкнутую область, столько же из нее и выйдет. В результате поток вектора Е будет равен нулю.

Если электрическое поле создается системой точечных зарядов формула" src="http://hi-edu.ru/e-books/xbook785/files/18-4.gif" border="0" align="absmiddle" alt="

Эта формула является математическим выражением теоремы Гаусса: поток вектора напряженности Е электрического поля в вакууме через произвольную замкнутую поверхность равен алгебраической сумме зарядов, которые она охватывает, деленной на формула" src="http://hi-edu.ru/e-books/xbook785/files/18-6.gif" border="0" align="absmiddle" alt="

Для полноты описания представим теорему Гаусса еще и в локальной форме, опираясь не на интегральные соотношения, а на параметры поля в данной точке пространства. Для этого удобно использовать дифференциальный оператор - дивергенцию вектора, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/nabla.gif" border="0" align="absmiddle" alt=" («набла») -

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-1.gif" border="0" align="absmiddle" alt="

В математическом анализе известна теорема Гаусса-Остроградского: поток вектора через замкнутую поверхность равен интегралу от его дивергенции по объему, ограниченному этой поверхностью, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/ro.gif" border="0" align="absmiddle" alt=":

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-4.gif" border="0" align="absmiddle" alt="

Это выражение и есть теорема Гаусса в локальной (дифференциальной) форме.

Теорема Гаусса (2.2) позволяет определять напряженности различных электростатических полей. Рассмотрим несколько примеров применения теоремы Гаусса.

1. Вычислим Е электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность радиуса R несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда всюду одинакова пометка">r >R от центра сферы мысленно построим новую сферическую поверхность S, симметричную заряженной сфере. В соответствии с теоремой Гаусса

формула" src="http://hi-edu.ru/e-books/xbook785/files/20-1.gif" border="0" align="absmiddle" alt="

Для точек, находящихся на поверхности заряженной сферы радиуса R, по аналогии можно записать:

выделение">внутри заряженной сферы, не содержит внутри себя электрических зарядов, поэтому поток пометка">Е = 0.

Теорема Гаусса устанавливает точное соотношение между потоком напряженности электрического поля через замкнутую поверхность и суммарным зарядом Q внутри этой поверхности:

где ε 0 - та же константа (электрическая постоянная), что и в законе Кулона.
Подчеркнем, что Q - это заряд, заключенный внутри той поверхности, по которой берется интеграл в левой части. При этом не существенно, как именно распределен заряд внутри поверхности; заряды вне поверхности не учитываются. (Внешний заряд может повлиять на расположение силовых линий, но не на алгебраическую сумму линий, входящих внутрь поверхности и выходящих наружу.

Прежде чем переходить к обсуждению теоремы Гаусса, заметим, что интеграл по поверхности на практике не всегда легко вычисляется, однако необходимость в этом возникает не часто, за исключением самых простых ситуаций, которые мы рассмотрим ниже

Как же связаны между собой теорема Гаусса и закон Кулона? Покажем вначале, что закон Кулона следует из теоремы Гаусса. Рассмотрим уединенный точечный заряд Q . По предположению теорема Гаусса справедлива для произвольной замкнутой поверхности. Выберем поэтому такую поверхность, с которой удобнее всего иметь дело: симметричную поверхность сферы радиусом r , в центре которой находится наш заряд Q (рис. 23.7).

Поскольку сфера (конечно, воображаемая) симметрична относительно заряда, расположенного в ее центре, напряженность электрического поля Е должна иметь одно и то же значение в любой точке сферы; кроме того, вектор Е всюду направлен наружу (или всюду внутрь) параллельно вектору dA элемента поверхности. Тогда равенство

принимает вид

(площадь сферы радиусом r равна 4πr 2). Отсюда находим

В итоге мы получили закон Кулона.

Теперь об обратном. В общем случае теорему Гаусса нельзя вывести из закона Кулона: теорема Гаусса является более общим (и более тонким) утверждением, нежели закон Кулона. Однако для некоторых частных случаев теорему Гаусса удается получить из закона Кулона; мы используем общие рассуждения относительно силовых линий. Рассмотрим для начала уединенный точечный заряд, окруженный сферической поверхностью (рис. 23.7). Согласно закону Кулона, напряженность электрического поля в точке на поверхности сферы равна

Е = (1 /4πε 0)(Q/r)

Проделав в обратном порядке аналогичные рассуждения, получим

Это и есть теорема Гаусса, и мы вывели ее для частного случая точечного заряда в центре сферической поверхности. Но что можно сказать о поверхности неправильной формы, например поверхности А 2 на рис. 23.8 . Через эту поверхность проходит то же число силовых линий, что и через сферу А 1 , но поскольку поток напряженности электрического поля через поверхность пропорционален числу проходящих через нее силовых линий, поток через А 2 равен потоку через А 1 .

Следует ожидать поэтому, что формула

справедлива для любой замкнутой поверхности, окружающей точечный заряд.

Рассмотрим, наконец, случай, когда внутри поверхности находится не единственный заряд. Для каждого заряда в отдельности

Но коль скоро полная напряженность электрического поля Е есть сумма напряженностей, обусловленных отдельными зарядами, , то

где - суммарный заряд, заключенный внутри поверхности.
Итак, эти простые рассуждения подсказывают нам, что теорема Гаусса справедлива для любого распределения электрических зарядов внутри любой замкнутой поверхности. Следует иметь в виду, однако, что поле Е не обязательно обусловлено только зарядами Q , которые находятся внутри поверхности. Например, на рис. 23.3 рассмотренном ранее, электрическое поле Е существует во всех точках поверхности, однако оно создается вовсе не зарядом внутри поверхности (здесь Q = 0). Теорема Гаусса справедлива для потока напряженности электрического поля через любую замкнутую поверхность; она утверждает, что если поток, направленный внутрь поверхности, не равен потоку, направленному наружу, то это обусловлено наличием зарядов внутри поверхности.

Теорема Гаусса справедлива для любого векторного поля, обратно пропорционального квадрату расстояния, например, для гравитационного поля. Но для полей другого типа она не будет выполняться. Допустим, например, что поле точечного заряда убывает как kQ/r ; тогда поток через сферу радиусом r определялся бы выражением

Чем больше радиус сферы, тем больше был бы поток, несмотря на то что заряд внутри сферы остается постоянным.

Применения теоремы Гаусса

Теорема Гаусса позволяет выразить связь между электрическим зарядом и напряженностью электрического поля в очень компактной и элегантной форме. С помощью этой теоремы удается легко найти напряженность поля в случае, когда распределение зарядов оказывается достаточно простым и симметричным. При этом, однако, необходимо позаботиться о надлежащем выборе поверхности интегрирования. Обычно стремятся выбрать поверхность так, чтобы напряженность электрического поля Е была постоянна по всей поверхности, или по крайней мере на определенных ее участках.

Чтобы получить эти результаты на основании закона Кулона, нам пришлось бы потрудиться, интегрируя по объему шара. Благодаря использованию теоремы Гаусса и симметрии задачи решение оказалось почти тривиальным. Это демонстрирует огромные возможности теоремы Гаусса. Однако подобное использование этой теоремы ограничено в основном случаями, когда распределение зарядов обладает высокой симметрией. В подобных ситуациях мы выбираем простую поверхность, на которой Е = const , и интеграл берется без труда. Разумеется, теорема Гаусса справедлива для любой поверхности, «простые» поверхности выбираются лишь для облегчения интегрирования.

Заключение

Поток напряженности однородного электрического поля Е через плоскую площадку А равен Ф E = Е А . Если поле неоднородно, то поток определяется интегралом Ф E = ∫Е dA .
Вектор А (или dA ) направлен перпендикулярно площадке А (или dA ); для замкнутой поверхности вектор А направлен наружу. Поток через поверхность пропорционален числу силовых линий, проходящих через эту поверхность.

Теорема Гаусса утверждает, что результирующий поток напряженности электрического поля, проходящий через замкнутую поверхность, равен суммарному заряду внутри поверхности, деленному на ε 0 :

В принципе теорему Гаусса можно использовать для определения напряженности электрического поля, создаваемого заданным распределением зарядов. Однако на практике ее применение ограничено в основном несколькими частными случаями, когда распределение зарядов имеет высокую симметрию. Истинная ценность теоремы Гаусса состоит в том, что она устанавливает в более общем и более элегантном виде, чем закон Кулона, связь между электрическим зарядом и напряженностью электрического поля. Теорема Гаусса является одним из фундаментальных уравнений электромагнитной теории.

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!

Электростатическое поле – это особый вид материи, с помощью которой происходит взаимодействие заряженных тел.

Закон Кулона :сила взаимодействия F между двумя неподвижными точечными зарядами q 1 и q 2 прямопропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния r между ними:

Где (e 0 – электрическая постоянная);

e – диэлектрическая проницаемость среды, показывающая во сколько раз сила взаимодействия зарядов в данной среде меньше, чем в вакууме.

Элект­рические поля, которые создаются неподвижными электрическими зарядами, называ­ются электростатическими .

Напряженность электростатического поля в данной точке есть физическая величина , определяемая силой, действующей на пробный точечный положительный заряд q 0 , помещенный в эту точку поля, то есть:

Электростатическое поле может быть изображено графически с помощьюсиловых линий .Силовая линия - это такая линия, касательная в каждой точке к которой совпадает по направлению с вектором напряженности электростатическго поля в данной точке (рис. 1, 2).

Если поле создается точечным зарядом, то силовые линии – это радиальные прямые, выходящие из положительного заряда (рис. 2, а ), и входя­щие в отрицательный заряд (рис. 2, б ).

Рис. 1 Рис. 2

С помощью силовых линий можно характеризовать не только направление, но и величину напряженности электростатического поля, связывая ей с густотой силовых линий. Большей густоте силовых линий соответствует большая величина напряженности (рис. 1, 2). Количественно числу силовых линий, прони­зывающих единичную площадку, расположенную перпендикулярно силовым линиям, ставится в соответствие величина напряженности электростатического поля. В этом случае определенному заряду q , создающему поле, соответствует определенное число N силовых линий, выходящих (для ) из заряда или входящих (для ) в заряд, а именно: .

Поток вектора напряженности электростатического поля через произвольную площадку S характкризуется числом силовых линий, пронизывающих данную площадку S.

Если площадка S перпендикулярна силовым линиям (рис. 3), то поток Ф Е вектора напряженности через данную площадку S : .

Рис. 3 Рис. 4

Рис. 3
Если же площадка S расположена неперпендикулярно силовым линиям электро-статического поля (рис. 4), то поток вектора через данную площадку S :

,

где α – угол между векторами напряженности и нормали к площадке S .

Для того, чтобы найти поток Ф Е вектора напряженности через произвольную поверхность S , необходиморазбить эту поверхность на элементарные площадки dS (рис. 5),определить элементарный поток dФ Е через каждую площадку dS по формуле:

,

а затем все эти элементарные потоки dФ Е сложить, что приводит к интегрированию:

,

где α – угол между векторами напряженности и нормали к данной элементарной площадке dS .

Если ввести вектор (рис. 5) как вектор, равный по величине площади площадки dS и направленный по вектору нормали к площадке dS , то величина , где a – угол между векторами и может быть записана в виде скалярного произведения векторов и , то есть, как , а полученное соотношение для потока вектора примет вид:

.

Теорема Остроградского - Гаусса для электростатического поля.

Теорема Остроградского - Гаусса для электростатического поля связывает между собой величину потока Ф Е вектора напряженности электростатического поля в вакууме через произвольную замкнутую поверхность S с величинойзаряда q , заключенного внутри данной замкнутой поверхности S (рис. 6).

Рис. 6
Поскольку все силовые линии, выходящие из заряда (для ) или входящие в заряд (для ), пронизываютпроизвольную замкнутую поверхность S , охватывающую этот заряд (рис. 6), то величина потока Ф Е вектора через эту поверхность S будет определяться числом N силовых линий выходящих из заряда (для ) или входящих в заряд (для ):

.

Это соотношение есть теорема Остроградского-Гаусса для электростатического поля.

Таккак поток считается положитель­ным, если силовые линии выходят из поверхности S , и отрицательным для линий, входящих в поверхность S, то в случае, если внутри произвольной замкнутой поверхности S находится не один, а несколько (n ) разноименных зарялов, то теорема Остроградского - Гаусса для электростатического поля формулируется следующим образом:

поток вектора напряженности электростатического поля в вакууме через произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0 :

.

Тема 2. Работа сил электростатического поля. Потенциал

Если в электростатическом поле, создаваемом точечным зарядом q , перемещается другой пробный заряд q 0 из точки 1 в точку 2 вдоль произвольной траектории (рис. 7), то при этом совершается работа сил электростатического поля.

Элементарная работа dA силы на элементарном перемещении равна: .

Из рисунка 7 видно, что .

Тогда ().

Работа А при перемещении заряда q 0 вдоль траектории от точки 1 до точки 2 :

То есть работа при перемещении заряда из точки 1 в

точку 2 в электростатическом поле не зависит от траектории перемещения, а определяется только положениями начальной и конечной точек. Поэтому электростатическое поле точечного заряда является потенциальным .

Работа, совершаемая силами электростатического поля при перемещении заряда q 0 из точки 1 в точку 2 , выражается следующим образом:

,

где φ 1 и φ 2 потенциалы электростатического поля в точках 1 и 2 .

Потенциал электростатического поля определяется с точностью до произвольной аддитивной постоянной С , то есть для поля точечного заряда q :

.

Тогда , .

Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами электростатического поля, при перемещении пробного точечного заряда q 0 из точки 1 в точку 2 :

.

Связь между напряженностью и потенциалом электростатического поля

Напряженность и потенциал φ электростатического поля связаны между собой следующим образом:

= – grad φ

или , где

– единичные векторы координатных осей Ох , Оy , Оz , соответственно.

Знак минус в приведенной формуле означает, что вектор напряженности электростатического поля направлен в сторону максимального убывания потенциала j .

Для графического изображения распределения потенциала электростатического поля используютсяэквипотенциальные поверхности, то естьповерхности, во всех точках которых потенциал j имеет одно и то же значение.

Например, для поля, созданного точечным зарядом q , потенциал j определяется выражением: , а эквипотенциальными поверхностями являются кон­центрические сферы (рис. 8).

Из этого рисунка видно, что в случае точечного заряда силовые линии поля (штриховые линии на рисунке) нормальны (перпендикулярны) к эквипотенциальным поверхностям (сплошные линии на рисунке).

Это свойство нормального взаимного расположения силовых линий и эквипотенциальных поверхностей электростатического поля является общим для любых случаев электростатического поля.

Таким образом, зная расположение силовый линий электростатического поля, можно построить эквипотенциальные поверхности этого электростатического поля и, наоборот, по известному расположению эквипотенциальных поверхностей электростатического поля можно построить силовые линии электростатического поля.

Магнитное поле

Тема 3. Магнитное поле. Закон Био-Савара-Лапласа

Электрический ток создает поле, действующее на магнитную стрелку. Стрелка ориентируется по касательной к окружности, лежащей в плоскости, перпендикуляной к проводнику с током (рис. 9).

Основной характеристикой магнитного поля является вектор индукция . Принято, что вектор индукция магнитного поля направлен в сторону север-ного полюса магнитной стрелки, помещенной в данную точку поля (рис. 9).

По аналогии с электрическим полем, магнитное поле также может быть изображено графически с помощью силовых линий (линий индукции магнитного поля ).

Силовая линия – это такая линия, касательная к которой в каждой точке совпадает по направлению с вектором индукции магнитного поля. Силовые линии магнитного поля, в отличие от силовых линий электростатического поля, являются замкнутыми и охватывают проводники с током. Направление силовых линий задается правилом правого винта (правилом буравчика): головка винта, ввинчиваемого по направлению тока, враща­ется в направлении линий Рис. 9

магнитной индукции (рис. 9).

Для нескольких источников магнитного поля согласно принципу суперпозиции магнитных полей индукция результирующего магнитного поля равна векторной сумме индукций всех отдельных магнитных полей:

Вектор индукции магнитного поля, создаваемого проводником с током , можно определить с помощью закона Био-Савара-Лапласа. При этомнеобходимо учесть то, что закон Био-Савара-Лапласа позволяет найти модуль и направление лишьвектора индукции магнитного поля, создаваемого элементом проводника с током . Поэтому для определения вектора индукции магнитного поля, создаваемого проводником с током , необходимо первоначально разбить этот проводник на элементы проводника , для каждого элемента с помощью закона Био-Савара-Лапласа найти вектор индукции , а затем, используя принцип суперпозиции магнитных полей, сложить векторно все найденные вектора индукции .