Z 3 i комплексные числа. Возведение комплексных чисел в степень. Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями

В пуассоновском потоке событий (стационарном и нестационарном) число событий потока , попадающих на любой участок, распределено по закону Пуассона  


Таким образом, для исследуемой системы S с дискретными состояниями и непрерывным временем переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенной интенсивностью Я.  

Представим автомобиль как некоторую систему S с дискретными состояниями iSj,. 2. .... Sn, которая переходит из состояния S/ в состояние Sj(i - 1, 2,. .., n,j = I, 2,. .., и) под воздействием пуассоновских потоков событий (отказов) с интенсивностями Хд. Будем рассматривать следующие состояния автомобиля, в которых он может находиться в процессе эксплуатации и которые характеризуются целодневными простоями  

Пуассоновский поток событий - это поток, обладающий двумя свойствами ординарностью и отсутствием последействия.  

В данном параграфе устанавливается связь между пуассоновскими потоками событий и с непрерывным временем. Показывается, как используется интенсивность пуассоновских стационарных потоков в качестве плотностей вероятностей переходов системы из состояния в состояние при анализе моделей конкретных ситуаций.  

Между пуассоновскими потоками событий и дискретными марковскими процессами с непрерывным временем имеется тесная связь.  

Связь пуассоновских потоков событий с дискретными марковскими процессами с непрерывным временем  

То есть технически, марковскую модель с непрерывным временем построить проще, чем модель с дискретным временем, хотя проблема подчинения пуассоновскому закону распределения всех потоков событий , переводящих элементы системы из состояния в состояние, остается.  

Можно считать, что события, переводящие автомобиль из состояния в состояние, представляют собой потоки событий (например, потоки отказов). Если все потоки событий , переводящие систему (автомобиль) из состояния в состояние, пуассоновские (стационарные или нестационарные), то процесс, протекающий в системе, будет марковским, а плотности вероятности перехода Ху в непрерывной цепи Маркова представляют собой интенсивности потока событий, переводящего систему из состояния Si в состояние Sj. Например, Х03 - интенсивность потока отказов автомобиля, который переводит автомобиль из состояния исправен, работает в состояние находится в ТР.  

Допущения о пуассоновском характере потока событий и о показательном распределении промежутков времени между событиями ценны тем, что позволяют на практике применить мощный аппарат марковских случайных процессов .  

Пуассоновский стационарный (простейший) поток событий  

Пуассоновский стационарным (простейшим) поток событий  

Пуассоновский нестационарный поток событий  

Рассмотрим нестационарный пуассоновский поток с интенсивностью Mf), некоторый промежуток времени длиной г>0, начинающийся с момента t0 (и заканчивающийся, следовательно, в момент +г) и дискретную случайную величину Х р г) - число событий, наступающих в потоке за промежуток времени от ta до t0+r.  

Определение 6.2. Элементом вероятности появления события в нестационарном пуассоновском потоке называется вероятность >,(АО появления события за элементарный (достаточно малый) промежуток времени от t0 до t0+bt.  

Теорема 6.2. Для элемента вероятности появления события за элементарный промежуток времени от t0 до t0+Af в нестационарном пуассоновском потоке с интенсивностью A(t) имеет место приближенная формула  

Основное характеристическое свойство нестационарного пуассоновского потока состоит в том, что вероятность наступления определенного числа событий за временной промежуток зависит не только от его длины, но и от момента его начала.  

Одной из основных стохастических характеристик нестационарного пуассоновского потока является дискретная случайная величина X(t т), представляющая собой случайное число событий, наступающих в потоке за промежуток [ t.+t.  

Другой основной стохастической характеристикой нестационарного пуассоновского потока является случайный интервал времени T(tB) между двумя соседними событиями, первое из которых наступило в момент t0.  

Доказательство Вероятность p (t At) того, что система S, находившаяся в момент времени t в состоянии sp за промежуток времени от t до t+Ы перейдет из него в состояние s (см. 4) равна элементу вероятности pfa t) появления события в пуассоновском потоке П.. на элементарном участке от t до +Д (см. Определение 5.11). Но (см. (4.3))  

Система, в которой протекает дискретный марковский процесс с непрерывным временем, перескакивает из одного состояния х в другое xj не самопроизвольно, а под воздействием определенного события, которое мы можем отнести к событиям некоторого пуассоновского потока П.. и считать, таким образом, что переход системы из состояния х в состояние х происходит под воздействием всего потока /L. Привлечение всего потока П.. дает нам возможность рассматривать интенсивность А() этого потока.  

Рассмотрим более подробно случай пуассоновского распределения спроса. Функция затрат будет иметь вид, аналогичный (5.6.18), с заменой интегрирования по х суммированием. Найдем плотность 1> (т) распределения времени дефицита. Распределение времени наступления k -го события пуассоновского потока подчинено закону Эрланга k -го порядка. Дефицит начинается при израсходовании всего запаса S и еще одной единицы, так что  

Общий поток отказов, связанный с попаданием автомобилей исследуемой группы в ТО-2, получается путем наложения (суперпозиции) потоков ТО-2 этих автомобилей. Как показывают расчеты, распределение интервала пробега между событиями в этом потоке подчиняется показательному закону . При этом поток ТО-2 всех исследуемых автомобилей является пуассоновским.  

Образ потока отказов, связанного со списанием автомобиля, является условным. Действительно, если автомобиль отказывает в тот момент, когда происходит первое событие данного потока, то совершенно все равно, продолжается после этого поток отказов или прекращается судьба автомобиля от этого уже не зависит. В случае когда элемент (автомобиль) не подлежит восстановлению, поток отказов является пуассоновским.  

Каждый из входящих в блок агрегатов является сложной системой , состоящей из большого числа элементов. Отказ каждого из них может привести к утрате способности выполнения поставленной задачи всего агрегата. Поток отказов агрегата во времени образуется в результате наложения множества событий - потоков отказов элементов, входящих в его состав. При решении практической задачи отказы в элементах можно рассматривать как независимые (или слабозависимые) и ординарные события, поэтому для суммарного потока отказов всего агрегата правомерно применение предельной теоремы потоков в теории случайных процессов . Данная теорема определяет условия, при которых сумма независимых (или слабо зависимых)

Этот поток занимает центральное место среди всего многообразия потоков, так же как случайные величины с нормальным законом распределения в прикладной теории вероятностей. Такое положение объясняется тем обстоятельством, что в теории потоков, так же как и в теории случайных величин, имеется предельная теорема , согласно которой сумма большого числа независимых потоков с любым законом распределения приближается к простейшему потоку с ростом числа слагаемых потоков.

Стационарным пуассоновским (простейшим) называется поток, обладающий тремя свойствами:ординарностью ,отсутствием последействия истационарностью .

Распределение событий на малом интервале времени

По определению, интенсивностью потока называется предел
, так как простейший поток стационарен, то для него
.

Стационарность потока и отсутствие последействия исключают зависимость вероятности появления событий на интервале
как от расположения этого интервала на оси времени, так и от событий ему предшествующих. Поэтому
.

Для любого промежутка времени имеем . При устремлении
всеми членами правой части этой формулы, за исключением первого, можно пренебречь, т.к. в силу ординарности потока событий эти величины пренебрежимо малы по сравнению с
:

.

С учетом изложенного преобразуем исходное выражение для интенсивности потока:

.

Отсюда имеем равенство
, т.е. вероятность появления одного события на малом интервале времени пропорциональна этому интервалу с коэффициентом.

Очевидно, что
. Следовательно,
, откуда имеем
- вероятность непоявления ни одного события на малом интервале времени
.

Распределение событий в пуассоновском потоке

Найдем выражение
, где
- вероятность того, что на интервале
произойдетсобытий. Это событие произойдет в одном из двух взаимоисключающих случаях:

По теореме сложения вероятностей несовместных событий имеем вероятность наступления ситуации 1 или 2:

Откуда . Устремив
, получим
.

Определим аналогичное соотношение для
. Чтобы событие на интервале
не наступило ни одного раза, необходимо и достаточно, чтобы оно наступило0 раз в интервалеи0 раз - в
. Вероятность этого события равна. Откуда аналогично получим
.

Таким образом, пуассоновский поток событий описывается системой линейных дифференциальных уравнений

,

с очевидными начальными условиями .

Из первого уравнения получаем
, из начальных условий имеем
, откудас = 1 . Окончательно
.

Таким образом, для пуассоновского потока вероятность
отсутствия событий на любом интервале длинойопределяется экспоненциальной зависимостью. Для решения полной системы уравнений используем преобразование Лапласа. Имеем,

откуда
;
и далее
;
; ...
.

Взяв обратное преобразование Лапласа, с помощью таблиц получим
, т.е. распределение Пуассона.

Таким образом, простейший поток подчиняется закону распределения Пуассона, для которого математическое ожидание и дисперсия соответственно равны
.

Распределение интервалов между событиями

Найдем закон распределения интервалов времени между событиями для простейшего потока. Рассмотрим случайную величину - промежуток времени между двумя произвольными соседними событиями в простейшем потоке. Требуется найти функцию распределения
.

Рассмотрим противоположное событие
. Это вероятность того, что, начиная с некоторого момента появления события, за времяне появится больше ни одного события. Так как поток без последействия, то тот факт, что событие появилось в момент , не должен оказать никакого влияния на поведение потока в дальнейшем. Поэтому вероятность
, откуда
и плотность распределения вероятности
.

Такой закон распределения называется показательным (экспоненциальным) с параметром. Найдем математическое ожидание и дисперсиюэтого процесса:

;

Показательный закон обладает замечательным свойством: если промежуток времени, распределенный по показательному закону, уже длился некоторое время , то это никак не влияет на закон распределения оставшейся части промежутка
(он будет таким же, как закон распределения промежутка).

Докажем это свойство. Пусть
- вероятность того, что обслуживание, продолжавшееся(с), еще продлится не менее(с): т.е. на интервале времениa + t не произойдет ни одного события. При показательном законе распределения времени обслуживания
.

По теореме о произведении вероятностей событий . При показательном законе;
и, следовательно,
, т.е. при показательном законе времени обслуживания закон распределения оставшейся части времени обслуживания не зависит от того, сколько времени уже длилось обслуживание. Можно доказать, что показательный закон единственный , для которого справедливо это свойство.

Рассмотренное свойство , по существу, представляет другую формулировку свойстваотсутствия последействия .

Описывает количество наступивших случайных событий, происходящих с постоянной интенсивностью.

Вероятностные свойства потока Пуассона полностью характеризуются функцией Λ(А) , равной приращению в интервале А некоторой убывающей функции. Чаще всего поток Пуассона имеет мгновенное значение параметра λ(t) - функцию, в точках непрерывности которой вероятность события потока в интервале равна λ(t)dt . Если А - отрезок , то

Λ (A) = ∫ a b λ (t) d t {\displaystyle \Lambda (A)=\int \limits _{a}^{b}\lambda (t)\,dt}

Поток Пуассона, для которого λ(t) равна постоянной λ , называется простейшим потоком с параметром λ .

Потоки Пуассона определяются для многомерного и вообще любого абстрактного пространства, в котором можно ввести меру Λ(А) . Стационарный поток Пуассона в многомерном пространстве характеризуется пространственной плотностью λ . При этом Λ(А) равна объему области А , умноженному на λ .

Классификация

Различают два вида процессов Пуассона: простой (или просто: процесс Пуассона) и сложный (обобщённый).

Простой процесс Пуассона

Пусть λ > 0 {\displaystyle \lambda >0} . Случайный процесс { X t } t ≥ 0 {\displaystyle \{X_{t}\}_{t\geq 0}} называется однородным Пуассоновским процессом с интенсивностью λ {\displaystyle \lambda } , если

Сложный (обобщённый) пуассоновский процесс

Обозначим через S k {\displaystyle S_{k}} сумму первых k элементов введённой последовательности.

Тогда определим сложный Пуассоновский процесс { Y t } {\displaystyle \{Y_{t}\}} как S N (t) {\displaystyle S_{N(t)}} .

Свойства

  • Пуассоновский процесс принимает только неотрицательные целые значения, и более того
P (X t = k) = λ k t k k ! e − λ t , k = 0 , 1 , 2 , … {\displaystyle \mathbb {P} (X_{t}=k)={\frac {\lambda ^{k}t^{k}}{k!}}e^{-\lambda t},\quad k=0,1,2,\ldots } .
  • Траектории процесса Пуассона - кусочно-постоянные, неубывающие функции со скачками равными единице почти наверное. Более точно
P (X t + h − X t = 0) = 1 − λ h + o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}=0)=1-\lambda h+o(h)} P (X t + h − X t = 1) = λ h + o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}=1)=\lambda h+o(h)} P (X t + h − X t > 1) = o (h) {\displaystyle \mathbb {P} (X_{t+h}-X_{t}>1)=o(h)} при h → 0 {\displaystyle h\to 0} ,

где o (h) {\displaystyle o(h)} обозначает «о малое» .

Критерий

Для того чтобы некоторый случайный процесс { X t } {\displaystyle \{X_{t}\}} с непрерывным временем был пуассоновским (простым, однородным) или тождественно нулевым достаточно выполнение следующих условий:

Информационные свойства

Зависит ли T {\displaystyle T} от предыдущей части траектории?
P ({ T > t + s ∣ T > s }) {\displaystyle \mathbb {P} (\{T>t+s\mid T>s\})} - ?

Пусть u (t) = P (T > t) {\displaystyle u(t)=\mathbb {P} (T>t)} .

U (t ∣ s) = P (T > t + s ∩ T > s) P (T > s) = P (T > t + s) P (T > s) {\displaystyle u(t\mid s)={\frac {\mathbb {P} (T>t+s\cap T>s)}{\mathbb {P} (T>s)}}={\frac {\mathbb {P} (T>t+s)}{\mathbb {P} (T>s)}}}
u (t ∣ s) u (s) = u (t + s) {\displaystyle u(t\mid s)u(s)=u(t+s)}
u (t ∣ s) = s (t) ⇔ u (t) = e − α t {\displaystyle u(t\mid s)=s(t)\Leftrightarrow u(t)=e^{-\alpha t}} .
Распределение длин промежутков времени между скачка́ми обладает свойством отсутствия памяти ⇔ оно показательно .

X (b) − X (a) = n {\displaystyle X(b)-X(a)=n} - число скачков на отрезке [ a , b ] {\displaystyle } .
Условное распределение моментов скачков τ 1 , … , τ n ∣ X (b) − X (a) = n {\displaystyle \tau _{1},\dots ,\tau _{n}\mid X(b)-X(a)=n} совпадает с распределением вариационного ряда, построенного по выборке длины n {\displaystyle n} из R [ a , b ] {\displaystyle R} .

Плотность этого распределения f τ 1 , … , τ n (t) = n ! (b − a) n I (t j ∈ [ a , b ] ∀ j = 1 , n ¯) {\displaystyle f_{\tau _{1},\dots ,\tau _{n}}(t)={\frac {n!}{(b-a)^{n}}}\mathbb {I} (t_{j}\in \ \forall j={\overline {1,n}})}

ЦПТ

  • Теорема.

P (X (t) − λ t λ t < x) ⇉ x λ t → ∞ Φ (x) ∼ N (0 , 1) = 1 2 π ∫ − ∞ x e − u 2 2 d u {\displaystyle \mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}}

Скорость сходимости:
sup x | P (X (t) − λ t λ t < x) − Φ (x) | ⩽ C 0 λ t {\displaystyle \sup \limits _{x}{\biggl |}\mathbb {P} {\biggl (}{\frac {X(t)-\lambda t}{\sqrt {\lambda t}}},
где C 0 {\displaystyle C_{0}} - константа Берри-Эссеена .

Применение

Поток Пуассона служит для моделирования различных реальных потоков: несчастных случаев, потока заряженных частиц из космоса, отказов оборудования и других. Так же возможно применение для анализа финансовых механизмов, таких как поток платежей и других реальных потоков. Для построения моделей различных систем обслуживания и анализа их пригодности.

Использование потоков Пуассона значительно упрощает решение задач систем массового обслуживания , связанных с расчетом их эффективности. Но необоснованная замена реального потока потоком Пуассона там, где это недопустимо, приводит к грубым просчетам.

Интервал времени между двумя соседними событиями простейшего потока имеет распределение:

f 1 (x) = f(x) = (x³0),

где - интенсивность потока.

Используя метод имитации показательного (экспоненциального) распределения, получаем следующий способ моделирования пуассоновского потока:

t 0 =0; t j = t j -1 - (1/ ) lnu , (j=1,2,3,...).

Величина u - случайное число, получаемое от ДСЧ.

Равномерный поток

Для этого потока событий считается, что промежуток времени между последовательными событиями равномерно распределён на интервале , т.е.

f(x)=1/(b-a) , (a£x£b).

f 1 (x)=2(b-x)/(b-a) 2 ;

F 1 (x)=1-[(b-x) 2 /(b-a) 2 ] , (a£x£b)

Применяя для моделирования метод обратной функции, получим алгоритм вычисления первого момента времени

где u получают от ДСЧ.

Окончательно имеем следующий алгоритм моделирования равномерного потока:

1) момент времени t 1 наступления первого события вычисляется по формуле

2) для последующих моментов времени производимы вычисления по формуле

t j =t j -1 + a + (b-a)u;

Величина u вырабатывается ДСЧ.

Поток Эрланга порядка k

Потоком Эрланга k-го порядка называют поток событий, получающегося "прореживанием" простейшего потока, когда сохраняется каждая k-я точка (событие) в потоке, а все промежуточные выбрасываются.

Интервал времени между двумя соседними событиями в потоке Эрланга k-го порядка представляет собой сумму k независимых случайных величин Z 1 ,Z 2 ,...,Z k , имеющих показательное распределение с параметром λ:

Закон распределения случайной величины Z называется законом Эрланга k-го порядка и имеет плотность

, (x > 0).

Математическое ожидание и дисперсия случайной величины Z соответственно равны:

M[Z]=k/ ; D[Z]=k/ 2 .

На основе определения потока Эрланга получается простой способ моделирования: прореживается пуассоновский поток с интенсивностью = /k, т.е. в пуассоновском потоке допускаем моменты времени с номерами 1,2,...,k-1, а k-й момент оставляем, т.к. он принадлежит новому потоку и т.д. Таким образом, моменты времени потока Эрланга вычисляются по формулам:



где - интенсивность потока Эрланга k-го порядка, u j - случайные числа от ДСЧ.

3. ОБЪЕКТЫ И СРЕДСТВА ИССЛЕДОВАНИЯ

Объектами исследования в лабораторной работе являются потоки событий, образованные слиянием нескольких потоков с известными характеристиками.

В процессе имитации потоков событий используются различные методы сортировки.

Одним из простых методов сортировки является метод пузырька (BUBBLE) который позволяет массив A, содержащий N элементов, расположить, например, в возрастающем порядке. Соответствующий алгоритм приведен на рис.4.1. Однако. Более эффективным методом для данного типа задач будет метод вставки.

процедура BUBBLE(A, N);

Цикл I=1,N1;

Если A(K) £ A(J) то идти к 20;

Если (K³1), то идти к 10;

Рис.4.1. Подпрограмма сортировки методом пузырька

В лабораторной работе могут быть использованы и другие более эффективные методы сортировки (например, адресная сортировка и т.п.).

4. ПОДГОТОВКА К РАБОТЕ

4.1. Ознакомиться с основными типами потоков событий.

4.2. Ознакомиться с методами моделирования пуассоновского, равномерного потока событий и потока Эрланга порядка k.

4.3. Ознакомиться с методами сортировки массивов чисел.

5. ПРОГРАММА РАБОТЫ

В некоторую систему массового обслуживания по различным каналам поступают заявки, образующие поток событий заданного типа. На входе системы потоки сливаются в один. Составить алгоритм и программу имитации результирующего потока, указанного в варианте.

Первые 100 моментов времени поступления заявок в результирующем потоке вывести на печать. По первым 1000 заявкам рассчитать оценку средней интенсивности потока. Найденную оценку сравнить с теоретическим значением интенсивности потока.

5.1. Поток образован слиянием трёх пуассоновских потоков событий с интенсивностями 1 , 2 , 3 (1/с) (табл.5.1.).

Таблица 5.1.

Вариант
1 2,5 1,5
2 0,5
3 0,5 0,5 0,5

5.2. Поток образован слиянием двух равномерных потоков с параметрами a 1 , b 1 и a 2 , b 2 (с) (табл. 5.2.).

Таблица 5.2.

Вариант
a 1 1,5
b 1 2,5 1,5
a 2 0,5
b 2

5.3. Поток образован слиянием пуассоновского потока с интенсивностью (1 /с) и равномерного потока с параметрами a и b (с) (табл.5 3.).

Таблица 5.3.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. Дать определение потока событий.

6.2. Как строится вероятностное описание потока событий.

6.3. В чём состоит способ моделирования стационарного потока с ограниченным последствием.

6.4. Охарактеризовать пуассоновский поток и способ его моделирования.

6.5. Охарактеризовать равномерный поток и способ его моделирования.

6.6. Дать характеристику потока Эрланга k-го порядка и метода его имитации.

6.7. Привести характеристики потока событий, исследованного в лабораторной работе.

Лабораторная работа 6

Информатика, кибернетика и программирование

Определение Пуассоновского потока. Пуассоновский поток это ординарный поток без последействия. Классической моделью трафика в информационных сетях является Пуассоновский простейший поток. Он характеризуется набором вероятностей Pk поступления k сообщений за временной интервал t: где k=01 число сообщений; λ интенсивность потока.

1. Определение Пуассоновского потока. Свойства.

Пуассоновский поток - это ординарный поток без последействия.

Классической моделью трафика в информационных сетях является Пуассоновский (простейший) поток. Он характеризуется набором вероятностей P(k) поступления k сообщений за временной интервал t:

где k=0,1,… - число сообщений; λ - интенсивность потока.

Заметим, что интервал времени измерения количества сообщений t и интенсивность потока λ являются постоянными величинами.

Семейство Пуассоновских распределений P(k) в зависимости от λ изображено на рис.1. Большее значение λ соответствует более широкому и симметричному графику плотности вероятности.

Рис. 1. Пуассоновские распределения. Плотности вероятностей.

Математическое ожидание (среднее) и дисперсия Пуассоновского потока равны λ t .

Зная вероятность поступления данных за период, можно получить распределение интервала τ между соседними событиями:

Отсюда вывод: пуассоновский поток характеризуется экспоненциальным распределением интервалов между событиями.

Основным свойством пуассоновского потока , обусловливающим его широкое применение при моделировании, является аддитивность: результирующий поток суммы пуассоновских потоков тоже является пуассоновским с суммарной интенсивностью:

При моделировании Пуассоновский поток можно получить мультиплексированием совокупности ON/OFF источников, которые называются Марковскими процессами (рис.2.).

Рис. 2. Получение Пуассоновского распределения

2. СМО с отказами (классическая система Эрланга)

Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в 1909 г. датским инженером-математиком А.К. Эрлангом. Задача ставится так: имеется n каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний каждого канала имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S 0 , S 1 ,…, S n , где S k – состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения (рис. 3).

Рис. 3. Граф состояний СМО

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S 2 (два канала заняты), то она может перейти в состояние S 1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживаний будет 2μ . Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S 3 (три канала заняты) в S 2 , будет иметь интенсивность 3μ , т.е. может освободиться любой из трех каналов, и т.д.

В формуле (1) для схемы гибели и размножения получим для предельной вероятности состояния:

(1)

где члены разложения - коэффициенты при p 0 в выражениях для предельных вероятностей p 1 , p 2 ,..., p n .

Заметим, что в формулу (1) интенсивности λ и μ входят не по отдельности, а только в виде отношения μ/λ. Обозначим: μ/λ = p , и будем называть величину ρ приведенной интенсивностью потока заявок или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящих за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулу (1) в виде:

(2)

При этом:

(3)

Формулы (2) и (3) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все n каналов системы будут заняты, т.е.

Отсюда находим относительную пропускную способность – вероятность того, что заявка будет обслужена:

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ на Q:

(4)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями 0,1,..., n и вероятностями этих значений p 0 , p 1 , …, p n :

Подставляя сюда выражения (3) для p k и выполняя соответствующие преобразования, мы, в конце концов, получили бы формулу для k. Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность A системы есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов:

или, учитывая (4):


А также другие работы, которые могут Вас заинтересовать

43346. Створення інформаційної бази даних служби продажу залізничних білетів 1.19 MB
Курсова робота з дисципліни Організація баз даних та знань на тему: Створення інформаційної бази даних служби продажу залізничних білетів Курсова робота студента 3 курсу групи КН48 Нестеренка М. Проектування інформаційної бази даних Створення реляційної моделі бази даних Створення бази даних
43347. Технологии аппаратной виртуализации 64.5 KB
Аппаратная виртуализация - виртуализация с поддержкой специальной процессорной архитектуры. В отличие от программной виртуализации, с помощью данной техники возможно использование изолированных гостевых систем, управляемых гипервизором напрямую. Гостевая система не зависит от архитектуры хостовой платформы и реализации платформы виртуализации.
43349. Публіцистика Уласа Самчука 108.5 KB
Деяка молодь не знає своєї історії і не може відповісти на питання Хто були їх предки. А коли все одно то це значить що все одно для нас хто є ми самі Це значить що ми не нарід не якась спільна історична збірна сила а невиразна юрба сіра маса вічно принижена без всяких ідеалів чернь4. Замкнутість людини лише у сільському просторі неминуче призведе до відчуження її від міста.
43351. РЕСУРСИ КОМЕРЦІЙНОГО БАНКУ, ЇХ ФОРМУВАННЯ ТА МЕНЕДЖМЕНТ 195 KB
Ресурси комерційного банку їх склад та структура. Власний капітал комерційного банку та його формування. Залучений капітал комерційного банку та його характеристика.
43352. Флористичні дані про медоносні рослини луків, які найбільш поширені на території України 210.5 KB
Загальна характеристика Шишацького району та Полтавської області Розділ 2.6 Інші рослини Висновки Література ВСТУП Об"єктом нашого дослідження є медоносні рослини які поширені в Шишацько му районіПолтавської областіїх значення у житті людини та характеристика. В Шищацькому районіПолтавської області нараховується велика кількість медоносних рослин. Загальна характеристика Шишацького...
43354. РЕАЛІЗАЦІЯ ЗМІШАНОЇ КРИПТОСИСТЕМИ ПОПЕРЕДНЬОГО ШИФРУВАННЯ 544 KB
Цей пункт забезпечує разгортання системи конфіденційного звязку управління роботою системи конфіденційного звязку первісну генерацію та розповсюдження ключів управління персоналом. Для автентифікації відкритих ключів дозволяеться використовувати послуги регіонального центру сертифікації. Генерація сеансових ключів для ГОСТ 2814789 перешифрування в режими простої заміни алгоритма ГОСТ 2814789 послідовності що отримана відповідно до пункту 1.2 Розповсюдження ключів за допомогою асиметричних криптосистем }