Неионогенные пав примеры. Поверхностно – активные вещества (ПАВ). Определение, состав, классификация и область применения. Работа ПАВ в дисперсных системах

Поверхностно-активные вещества

Пове́рхностно-акти́вные вещества́ (ПАВ ) - химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения .

Основной количественной характеристикой ПАВ является поверхностная активность - способность вещества снижать поверхностное натяжение на границе раздела фаз - это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю. Однако, ПАВ имеет предел растворимости (так называемую критическую концентрацию мицеллообразования или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразование или агрегация). В результате такой агрегации образуются так называемые мицеллы. Отличительным признаком мицеллообразования служит помутнение раствора ПАВ. Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.

  • Методы определения ККМ:
  1. Метод поверхностного натяжения
  2. Метод измерения контактного угла с тв. или жидкой поверхностью (Contact angle)
  3. Метод вращающейся капли (Spindrop/Spinning drop)

Строение ПАВ

Классификация ПАВ

  • Ионогенные ПАВ
    • Катионные ПАВ
    • Анионные ПАВ
    • Амфотерные
  • Неионогенные ПАВ
    • Алкилполиглюкозиды
    • Алкилполиэтоксилаты

Влияние ПАВ на компоненты окружающей среды

ПАВ делятся на те, которые быстро разрушаются в окружающей среде и те, которые не разрушаются и могут накапливаться в организмах в недопустимых концентрациях. Один из основных негативных эффектов ПАВ в окружающей среде - понижение поверхностного натяжения . Например в океане изменение поверхностного натяжения приводит к снижению показателя удерживания CO 2 и кислорода в массе воды. Только немногие ПАВ считаются безопасными (алкилполиглюкозиды), так как продуктами их деградации являются углеводы . Однако при адсорбировании ПАВ на поверхности частичек земли/песка степень/скорость их деградации снижаются многократно. Так как почти все ПАВ, используемых в промышленности и домашнем хозяйстве, имеют положительную адсорбцию на частичках земли, песка, глины, при нормальных условиях они могут высвобождать (десорбировать) ионы тяжёлых металлов , удерживаемые этими частичками, и тем самым повышать риск попадания данных веществ в организм человека.

Области применения

Библиография

  • Абрамзон А. А., Гаевой Г. М. (ред.) Поверхностно-активные вещества. - Л.: Химия, 1979. - 376 с.
  • Паршикова Т. В. Поверхностно-активные вещества как фактор регуляции развития водорослей. - Киев: Фитосоциоцентр, 2004. - 276 с. (на укр. яз.) ISBN 966-306-083-8 .
  • Остроумов С. А. Биологические эффекты при воздействии поверхностно-активных веществ на организмы. - М.: МАКС-Пресс, 2001. - 334 с. ISBN 5-317-00323-7 .
  • Ставская С. С., Удод В. М., Таранова Л. А., Кривец И. А. Микробиологическая очистка воды от поверхностно-активных веществ. - Киев: Наук. думка, 1988. - 184 с. ISBN 5-12-000245-5 .

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Поверхностно-активные вещества" в других словарях:

    - (a. surfactants; н. grenzflachenaktive Stoffe, oberflachenaktive Stoffe; ф. substances tensio actives; и. surfac tantes), вещества c асимметричной мол. структурой, молекулы к рых имеют дифильное строение, т.e. содержат лиофильные и… … Геологическая энциклопедия

    Вещества, способные накапливаться (сгущаться) на поверхности соприкосновения двух тел, называемой поверхностью раздела фаз, или межфазной поверхностью. На межфазной поверхности П. а. в. образуют слой повышенной концентрации адсорбционный… … Большая советская энциклопедия

    Поверхностно активные вещества (ПАВ) детергенты – вещества, снижающие поверхностное натяжение. Оказывая влияние на пограничные слои клеток, нарушают функции цитоплазматической мембраны и вследствие этого способны задерживать рост… … Словарь микробиологии

    Вещества, способные адсорбироваться на поверхности раздела двух фаз, понижая её поверхностное натяжение. К П. а. в. относятся органич. соединения с асимметричной мол. структурой, молекулы к рых содержат ат. группы, резко различающиеся характером… … Физическая энциклопедия

    - (ПАВ) химические соединения, способные адсорбироваться на границе раздела фаз, одна из которых обычно вода, и снижать поверхностное натяжение. Молекулы ПАВ состоят из углеводородного радикала (от 4 до 20 СН2 групп) и полярной группы (ОН, СООН,… … Большой Энциклопедический словарь

    поверхностно-активные вещества - ПАВ Вещ ва, способные адсорбироваться на поверхности раздела фаз и вызывать снижение поверхн. (межфазного) натяжения. Типичные ПАВ — органич. соединения, молекулы к рых содержат лиофильные и лиофобные (обычно гидрофильные и гидрофобные) ат … Справочник технического переводчика

    Поверхностно-активные вещества. - 0.10.4.2. Поверхностно активные вещества. Допускается использование ПАВ в соответствии со title= Автомобильные дороги для приготовления асфальтобетонных смесей. Источник … Словарь-справочник терминов нормативно-технической документации

Давайте сначала разберемся, что такое ПАВы. Это поверхностно-активные вещества, но такая расшифровка нас не устроит, непонятно же ничего. Говорят, что они, ПАВы, сейчас есть в любом моющем средстве, порошке, шампуне, мыле… Даже всяких кремах для обуви и лица.

Как видно из названия, ПАВ каким-то образом вступает в реакцию с поверхностью веществ. Все знают, как сложно, а порой и невозможно, смыть с рук смазку, жир или масло обычной водой без применения мыла или растворителей. Все потому что молекулы воды и молекулы жира не взаимодействуют между собой вообще никак, не цепляются друг к другу. Тут и вступают в игру поверхностно-активные вещества.

Дело в том, что молекула ПАВ содержит в себе одновременно гидрофильный (любящий воду) и гидрофобный (боящийся воды) компоненты, то есть молекула ПАВ может прицепиться одним боком к молекуле жира, а другим боком – к молекуле воды. Таким образом, ПАВ оказывается мостиком между двумя веществами, до этого никак между собой не взаимодействующими.

Однако и это не все их свойства. Одновременно с этим молекулы ПАВ внедряются в поверхностный слой загрязнения и понижают силы взаимного притяжения между молекулами загрязнения, то есть снижают поверхностное натяжение. Отдельные частицы грязи отрываются друг от друга и смываются водой.

Классический пример ПАВ – обычное мыло, да-да, именно обычное мыло, с фабрики, а не какое-нибудь мыло ручной работы. Но также ПАВами являются синтетические моющие средства (а какие из них не синтетические?), спирты, карбоновые кислоты, производные аммиака – амины и др.

Посмотрим на мыло с другой стороны. Нас постоянно пугают входящими в состав ПАВами у моющих средств, кремов, пасты. Все боятся ПАВов, все стремятся к натуральной косметике, а тут раз и обычное, привычное с детства мыло – ПАВ. Всю жизнь пользовались и не знали. Из чего же состоит обычное мыло и откуда оно пошло?

Моющие вещества в виде мыла были известны еще в Древнем Египте, у цивилизации Шумер и Вавилоне. Около трех тысяч лет до нашей эры люди уже использовали мыло. Изначально известно, что масло отлично очищают загрязнения – протрите подсолнечным маслом испачканные руки и грязь легко сойдет. Или возьмите грязной рукой горячий шашлык и вся грязь на пальцах отойдет. Если же в вытопленный жир добавить золу или песок получится прекрасный первобытный скраб или доисторическое мыло.

В 1808 году французский химик Мишель Эжен Шеврёль по просьбе владельцев текстильной фабрики установил состав мыла. В результате анализа оказалось, что мыло - это натриевая соль высшей жирной (карбоновой) кислоты. Основным компонентом твёрдого мыла на сегодняшний момент является смесь растворимых солей высших жирных кислот. Обычно это натриевые, реже - калиевые и аммониевые соли таких кислот, как стеариновая, пальмитиновая, миристиновая, лауриновая и олеиновая. Вот вам и ПАВы.

Сейчас мыло на заводах делают следующим образом – жиры, животные и растительные, а то и синтетические, нагревают в специальных котлах и омыляют едкой щелочью, в результате образуются соли щелочных металлов и спирты. Получается однородная вязкая жидкость, которая при охлаждении затвердевает и превращается в хозяйственное мыло – это мыло и глицерин. Есть еще ядровое, пилированное, натриевое, калиевое мыло. Но это уже особенности. Это и есть ПАВ, натуральный. Точнее один из многих видов. Помимо натуральных, существуют синтетические, они-то и вызывают претензии.

Сами по себе ПАВы имеют разную классификацию, основной считается разделение на анионные, катионные, амфотерные и неионогенные ПАВЫ, впрочем, обычному человеку такая классификация тоже ни о чем не говорит. Эта классификация удобна химикам, и связана с химическими реакциями, ионами и молекулами.

Можно их разделять также по характеру использования: моющие средства, эмульгаторы, смачиватели, солюблизаторы. Вообще ПАВы используются не только в моющих средствах. Смачивание, солюблизация, эмульгирование – все эти процессы являются стадиями моющего действия. Любой ПАВ, в той или иной степени, одновременно является и смачивателем, и солюблизатором, и эмульгатором, и моющим веществом. Но, при этом, разные ПАВы проявляют разную эффективность на разных стадиях моющего действия.

Всеми нами, ну или почти всеми, любимый шоколад, да и мороженное, печенье, соусы, часто содержат лецитин – это ПАВ в виде эмульгатора. Эмульгаторы – это вещества, обеспечивающие стабилизацию эмульсий из несмешивающихся жидкостей.

Смачиватели – вещества, вызывающие измельчение твёрдых тел на мелкие частички или жидкой фазы на мелкие капельки. Смачивание – первая фаза моющего действия, когда загрязнение распадается на отдельные частички или капельки и впоследствии обволакивается ПАВом (солюблизируется), и удаляется водой.

Солюблизаторы – вещества, помогающие повысить растворение частиц другого вещества, слаборастворимого в данной жидкой среде. Молекулы солюблизатора обволакивают плохо растворимую в данной среде частичку и образуют вокруг неё, так называемую мицеллу. Сама мицелла имеет сродство к среде растворителя и поэтому растворяется в нём, обеспечивая растворение изначально нерастворимой в нём частицы.

Использование ПАВа, как моющего средства – всего лишь вершина айсберга органической химии. Они применяются в текстильной и кожевенной промышленностях, лакокрасочной и бумажной, металлургии и нефтедобыче, в строительстве, сельском хозяйстве и пищевой промышленности, медицине, теплоэнергетике… В общем проще найти сферу, где они не применяются, чем перечислить все остальное.

Давайте теперь подумаем, чем же они могут быть опасны.

Что таят в себе ПАВы

Первая опасность, о которой говорят все – наша кожа является естественным барьером между нами и окружающей средой, на ней образуется защитная пленка из жиров, которые не пропускают вредоносные бактерии. Разумеется, ПАВ, и мыло в частности, первым делом смывает защитный слой с кожи. Высушенная и обезжиренная кожа быстрее стареет, подвержена различным болячкам. Проникновение ПАВов в более глубокие слои кожи из-за неправильно подобранной концентрации и состава, может привести к аллергическим реакциям на другие компоненты моющего средства из-за снижения барьерных функций кожи. По нормам, которые установлены ГОСТом, защитный слой должен восстановиться через 4 часа, после употребления ПАВа, однако кто ж это проверяет. Без ПАВа мы не смоем грязь, с ПАВом мы смоем и защитный слой.

Вторая опасность непосредственно для человека исходит от уже смытых в канализацию ПАВов. Многие синтетические моющие средства, в отличие от мыл, не подвержены естественному биохимическому разложению и не задерживаются фильтрующими установками. Конечно, по закону подлости, самые стойкие к разрушению ПАВы самые и дешевые. Водные растворы ПАВ постоянно поступают в стоки из множества источников, начиная от стиральных машин домохозяек и заканчивая удобрениями с полей. Все оказывается в конечном итоге в водоемах. Несмотря на то, что очистке сточных вод от ПАВ уделяется все большее внимание, очистные сооружения плохо справляются с удалением ПАВов. Таким образом, они могут возвращаться к людям уже в питьевой воде и накапливаться в организмах в недопустимых концентрациях.

Третья опасность – экологическая, возможно самая неприятная, но и самая незаметная. Из-за низкой скорости разложения ПАВ вредные результаты их воздействия на природу и живые организмы непредсказуемы. Сточные воды, содержащие продукты ПАВ, могут вызвать интенсивный рост растений, что приводит к загрязнению ранее чистых водоемов: по мере отмирания растений начинается их гниение, а вода обедняется кислородом, что в свою очередь ухудшает условия существования других форм жизни в воде. ПАВ может адсорбироваться на частичках земли, песка, глины, и высвобождать ионы тяжёлых металлов, удерживаемые этими частичками, и тем самым повышать риск попадания данных веществ в организм человека. Их свойство понижать поверхностное натяжение, в океанах приводит к снижению показателя удерживания CO2 и кислорода в массе воды.

Сточные воды пытаются чистить от ПАВ по-разному - перевод ПАВ в пену, адсорбция активным углем, использование ионообменных смол, нейтрализация катионактивными веществами и др. Эти методы дороги и недостаточно эффективны, и, скорее всего, не применяются в России – вы видели те отстойники? Сейчас считается, что предпочтительна очистка в отстойниках (аэротенках) и в естественных условиях (в водоемах) путем биологического окисления под действием бактерий, которые входят в состав активного ила.

По отношению к этому процессу ПАВ принято делить на "мягкие" и "жесткие". Жесткие ПАВ в настоящее время практически не производятся (некоторые алкилбензолсульфонаты и оксиэтилированные изооктилфенолы). Теоретически биоразложение идет до превращения мягких ПАВ в воду и углекислый газ, проблема сводится лишь к времени окисления. Если окисление происходит медленно, ПАВ успевает произвести вредное влияние на живые организмы и природную среду.

В настоящее время самым распространенным ПАВ в синтетических моющих средствах является алкилбензосульфонат. К группе анионных ПАВ также принадлежат алкансульфонат (SAS), алкилсульфат (FAS) и летучий алкилсульфат (FAES). FAS может быть получен из растительного сырья, например рапсового масла, или масла кокоса.

Катионные ПАВ особенно активно используются в синтетических средствах для "щадящей" стирки, так как играют роль смазки. Неионогенные ПАВ абсолютно невосприимчивы к жесткости воды, демонстрируют высокую эффективность даже при низких концентрациях и низких температурах стирки, не образуют много пены и препятствуют потемнению белья. Кстати, неиногенные ПАВ разлагаются легче, чем анионактивные.

Сапонин, полученный из мыльнянки или стиральных орешков (Waschnussen) принадлежит к неионогенным ПАВ. Другим примером неионогенного ПАВ является сахарный алкилполиглюкозид (APG), добываемый из возобновляемого сырья: кукурузы, сахарного тростника и кокосового ореха. APG является биологически разлагаемым и имеет отличную совместимость с кожей. Именно эти ПАВ используются в натуральных стиральных порошках.

По убыли раздражающего действия на кожу и глаза человека ПАВы можно расположить в следующий ряд: катионные > анионные > неионные. Эта цепочка справедлива и для токсичности: наиболее токсичными являются катионные ПАВ, менее токсичными – анионные и наименее – неионогенные ПАВ. Между прочим катионные ПАВ имеют интересное свойство – они обладают бактерицидным действием, поэтому получили широкое применение в медицине, а ПАВ цетилпиридиний хлорид вообще стал лекарственным средством.

В настоящее время приняты законы, разрешающие производство и применение ПАВ для моющих средств, биоразлагаемых не менее чем на 80%. Считается, что в стиральном порошке достаточно не более 5% ПАВ, чтобы он хорошо стирал. Только немногие ПАВ являются абсолютно безопасными (алкилполиглюкозиды), так как продуктами их деградации являются углеводы.

Не стоит забывать, что, как правило, в шампунях, моющих средствах. Содержится не один-одинешенек ПАВ, а их там целая композиция. Помимо основного ПАВа в состав входят Со-ПАВы в соотношении 1:3, 1:4. Если основной ПАВ – это обычно анионнные, то Со-ПАВами выступают различные амфотерные, неионогенные и анионные ПАВ. Итак, мы подошли к нашей теме – что такое мыльная основа и при чем здесь ПАВ. Сейчас мы уже понимаем, что мыльной основы без ПАВ быть не может в принципе. Очень часто на мыльной основе пишут – FREE SLS, FREE SLES. Интересно, что это за звери такие, понятно, что ПАВ, но почему именно без них.

Тут мы подходим к созданию мыльной основы. На самом деле мыльная основа имеет отношение к мылу такое же, как плавленые сырки к сыру. Называется она – мыльный продукт и изготавливается из синтетических поверхностно-активных веществ, в основном из нефтяных продуктов (лаурилсульфат натрия) и т. д.

В отличие от мыла, полученного промышленным путём, мыло ручной работы хуже мылится, поскольку входящие в состав мыльной основы ингредиенты более щадящие и мягкие (!). По той же причине оно быстрее истрачивается, чем аналогичного веса промышленное мыло.

SLS и SLES – это лаурилсульфат натрия и лауретсульфат натрия соответственно – присутствуют в большинстве моющих средств и косметике. SLES это более безопасная производная из SLS. Лаурилсульфат натрия (SLS) может вызывать раздражение кожи у некоторых людей при длительном контакте, однако даже в высокой концентрации не выявлено канцерогенного или эмбриотоксического действия. Признается безопасным в очищающих средствах, которые смываются водой (шампуни, очищающие гели, пенки и пр.). Продукты, содержащие любой из этих ингредиентов, не рекомендуются людям, страдающим угревой болезнью, дерматитами, сухостью кожи или потерей волос. SLES (лауретсульфат натрия) действует менее раздражающе, чем лаурилсульфат натрия, но приводит к более сильному высушиванию, которого можно избежать при тщательном смывании.

Итог

Итак, после такого количества терминов и наборов слов, давайте подведем конечный итог. ПАВ сильно демонизировали в последнее время, большинство людей после такой активной пропаганды не догадываются, что количество ПАВов на самом деле огромное и ими мы все пользуемся, так или иначе. Классическое мыло это по сути анионный ПАВ и довольно жесткий. Натуральные ПАВ безопаснее синтетических, однако натуральные в любых шампунях и мылах, продающихся в разных магазинах, не содержатся (во всяком случае, как основа моющей композиции), хотя в природе существуют.

Для получения достаточного моющего действия, ПАВ вводят в состав косметического моющего средства в количестве не менее 10 %, оптимальное содержание - 12–14 %. При выборе средства (шампуня, мыла, моющего средства, порошка) можно ориентироваться на этикетку. Однако не стоит забывать, что процент введенных ПАВов ставится довольно редко, а в некоторых случаях ПАВ вообще обозначается цифровым кодом без указания наименования – если состав средства закрыт патентом или является коммерческой тайной.

По сути, натуральным моющим средством можно признать только мыльный корень и сапонины (мыльные вещества) из растений. Если поискать в сети продажу ПАВов, то часто можно встретить овсяный, яблочный ПАВы, сахарный и кокосовый – это все натуральные или частично-натуральные ПАВы, которые используются в домашней косметике, но никак не в промышленных масштабах.

Поверхностно-активные вещества – это химические соединения, способные накапливаться на поверхности соприкосновения двух тел или двух термодинамических фаз (называемых поверхностью раздела фаз), и вызывающие снижение поверхностного натяжения веществ, образующих эти фазы.


На межфазной поверхности Поверхностно-активные вещества образуют слой повышенной концентрации - адсорбционный слой .

Строение ПАВ

Строго говоря, очень многие вещества при соответствующих условиях могут проявить поверхностную активность, т. е. адсорбироваться под действием межмолекулярных сил на той или иной поверхности, понижая её свободную энергию.


Однако поверхностно-активными обычно называются лишь те вещества, присутствие которых в растворах уже при весьма малых концентрациях (десятые и сотые доли %) приводит к резкому снижению поверхностного натяжения вещества этих растворов.


Как правило, такие вещества имеют дифильное строение молекул .


Слово дифильный можно перевести как «двояколюбящий» (от philéo - люблю). Или, выражаясь по-русски, дифильными можно назвать молекулы, имеющие сродство к веществам с разной природой.


Например, вода и масло почти не взаимодействуют друг с другом. Если их смешать в одной ёмкости, то такая смесь через некоторое время расслоится. Вода, как более тяжёлая, окажется внизу ёмкости, а масло соберётся в верхней её части.


Расслоение присходит потому, что масло и вода относятся к разным средам. Между молекулами этих сред действуют принципиально разные силы. Подробнее об этом в разделе: Взаимодействие "воды" и "масла".


Молекулы воды взаимодействуют друг с другом при помощи ориентационных сил , а молекулы масла – при помощи дисперсионных сил . Таким образом, при встрече вода и масло проявляют друг к другу безразличие.


В молекулах дифильных веществ одновременно присутствуют как полярные (гидрофильные) группы, так и неполярные (гидрофобные).


Примером полярных групп могут служить –OH, -COOH, -NO2, -NH2, -CN, -OSO3 и т.д. Неполярной частью молекулы обычно являются углеродные радикалы.


К ПАВам относятся карбоновые кислоты, их соли, спирты, амины, сульфокислоты и другие вещества.


Самым распространённым примером веществ с дифильной структурой являются мыла – натриевые и калиевые соли высших жирных кислот.

Работа ПАВ в дисперсных системах

Дифильные вещества обладают замечательным качеством. Они являются своего рода «мостиками», при помощи которых становится возможным взаимодействие фаз, до этого «игнорировавших» друг друга.


Действие таких веществ проявляется на поверхности соприкасающихся фаз и приводит к ативности сами вещества фаз, которые до этого момента не взаимодействовали.


Благодаря своим качествам ПАВ ы могут использоваться в составах моющих средств или стабилизаторов эмульсий.


Моющие средства


Моющие средства - вещества или смеси веществ, применяемые в водных растворах для очистки (отмывки) поверхности твёрдых тел от загрязнений.


В моющих средствах ПАВы работают следующим образом.


Молекула ПАВ – это дифильная молекула, имеющая в своём составе, как полярные (гидрофильные) группы, так и неполярные (гидрофобные).


Таким образом, своим гидрофобным хвостом она может взаимодействовать с молекулами загрязнения (как правило, имеющего жирную, т.е гидрофобную природу), а при помощи своей полярной группы связывается с полярной молекулой воды.


Одновременно с этим молекулы ПАВ внедряются в поверхностный слой загрязнения и понижают силы взаимного притяжения между молекулами загрязнения.


Говоря по-другому, молекулы ПАВ положительно адсорбируются в поверхностном слое загрязнения и снижают поверхностное натяжение взаимодействующих фаз. Это, в свою очередь, облегчает возможность отрыва отдельных кусочков загрязнения от основной его массы. Оторванные части загрязнения уносятся водой.


Самые известные моющие средства – мыла. Мыла представляют собой натриевые и калиевые соли жирных кислот (натриевые – твёрдые, калиевые – жидкие).


CH3 (CH2 )n COONa.


Стабилизаторы эмульсий.


Эму́льсия - дисперсная система, состоящая из микроскопических капель жидкости (дисперсной фазы ), распределенных в другой жидкости (дисперсионной среде ).


Дисперсная фаза и дисперсионная среда – это две фазы жидкостей, имеющих разную природу, и по этой причине, не растворяющиеся одна в другой, отторгающие друг друга.


Если уже знакомые нам воду и масло тщательно перемешать друг с другом при помощи миксера, то они образуют дисперсную систему, в которой маленькие частички воды будут соседствовать с частичками масла.


Но эта дисперсная система просуществует недолго. По уже известным нам причинам произойдёт расслоение фаз. Частички воды и масла будут укрупняться, соединяясь с себе подобными. Через некоторое время произойдёт образование двух монолитных фаз: масло вверху, вода внизу. Так что такую систему нельзя назвать дисперсной.


Чтобы дисперсная система состоялась, в её состав добавляют специальные вещества – стабилизаторы эмульсий или эмульгаторы.


Эмульгаторы представляют собой поверхностно активные вещества.


Представим себе эмульсию типа «масло в воде». В такой эмульсии микроскопические капельки масла будут распределены в объёме воды.


Эмульгатор , присутствующий в эмульсии, состоит из молекул дифильной природы. Своими гидрофобными хвостами молекулы эмульгатора будут взаимодействовать с молекулами масла. В результате этого взаимодействия вытянутые молекулы эмульгатора приобретут чёткую ориентацию: гидрофобные хвосты внутрь, полярные группы наружу.


Такое образование, напоминающее свернувшегося ежа, называется мицеллой .



Наружная поверхность мицеллы будет образована полярными (гидрофильными) группами эмульгатора. А эти группы, как мы знаем, могут взаимодействоать с молекулами воды, притягивая к себе противоположно заряженные части этих молекул.


Эта конструкция позволяет эмульсии избежать расслоения и в течение долгого времени сохраняет её стабильной.

Классификация ПАВ

Поверхностно активные вещества можно классифицировать по разным признакам. Мы приведём три вида классификаций:


По типу гидрофильных групп:

Анионные

Катионные

Амфотерные

Неионные


По характеру использования:

Моющие средства

Эмульгаторы

Смачиватели

Солюблизаторы


По длине гидрофобной цепи:

Гидрофобные ПАВ

Гидрофильные ПАВ


Классификация по типу гидрофильных групп:


Для ПАВ эта классификация является основной.


По типу гидрофильных групп ПАВы делят на:

Ионные, или ионогенные,

Анионные,

Катионные,

Амфотерные.

Неионные, или неионогенные.


Ионные ПАВы


Ионные ПАВы диссоциируют в воде на ионы, одни из которых обладают адсорбционной (поверхностной) активностью, другие - неактивны.


Рабочее действие ПАВа обеспечивается именно адсорбционно активными ионами.


Если адсорбционно активны анионы (т.е. отрицательно заряженные ионы), то ПАВы называются анионными , или анионоактивными, если активны катионы (положительно заряженные ионы) - катионными , или катионо-активными.


Амфотерные (или амфолитные) ПАВ содержат в своём составе одновременно две функциональные группы, одна из которых имеет кислый, другая – основной характер. В зависимости от среды, в которой они находятся, амфотерные ПАВы могут принимать или отдавать протон и проявлять, таким образом, либо анионную либо катионную активность.


Анионные ПАВы


Анионные ПАВы , как говорилось выше, диссоциируют, образуя отрицательно заряженные органические анионы:


RCOONa ↔ RCOO - + Na +


По своему составу анионные ПАВы , чаще всего - это органические кислоты и их соли:


R-COOН или R-COONa, R-COOК.


Наиболее распространены натриевые и калиевые соли жирных кислот. Их называют мылами. Натриевые соли имеют твёрдую консистенцию, калиевые – жидкую.


Также, большое распространение имеют соли кислых эфиров высокомолекулярных спиртов жирного ряда и серной кислоты с общей формулой:


CH3 (CH2 )n -O-SO3 Na


где n = 12 - 14.


Такие соли называются алкилсульфатами . Алкилсульфаты вырабатываются из спиртов с количеством углеродных атомов в цепи С12 – С14, получаемых из кокосового масла или гидрогенезацией кашалотного жира. Жирные спирты подвергаются фракционной дистилляции, и сульфатируются серной или хлорсульфоновой кислотой.


Полученный таким образом лаурилсульфат является одним из наиболее широко используемых анионных моющих средств. Его формула:


CH3 (CH2 )11 -O-SO3 Na


К анионным ПАВам принадлежат многие классы химических соединений. В таблице ниже приведём некоторые из них:


Некоторые анионные ПАВ

Наименование ПАВ

Строение


Среди ПАВов именно анионные ПАВы получили самое большое распространение. Их объём производства превышает объёмы производства всех остальных ПАВ вместе взятых.


Катионные ПАВы


Катионные ПАВы при диссоциации образуют положительно заряженные поверхностно-активные органические катионы:


RNH2 Cl ↔ RNH2 + .


Катионные ПАВы - основания, обычно амины различной степени замещения, и их соли. Они представлены следующими соединениями:


Некоторые катионные ПАВ

Наименование ПАВ

Строение

Четвертичные аммониевые соли


Объём производства катионных ПАВ значительно ниже, чем анионных, ни их роль с каждым годом возрастает благодаря их моющему и бактерицидному действию , а некоторые их представители, например цетилпиридиний хлорид, вошли в арсенал лекарственных средств.



Амфотерные (или амфолитные) ПАВ в зависимости от условий среды могут проявлять либо анионную, либо катионную активность.

Необходимым условием амфотерности ПАВ является близость констант и основной диссоциации.


Степень превращения ПАВа в катионную или анионную форму зависит от рН среды.


К амфотерным ПАВ относят чаще всего соединения, содержащие одновременно:


Карбоксильную и аминогруппу RN + HR1COO - ;

Сульфоэфирную и аминогруппу RN + HR1ОSO - 3 ;

Сульфонатную и аминогруппу RN + HR1SO - 3.


Наиболее типичным представителем этого класса ПАВ является альфа-алкил-бетаин, получивший торговое название бетаин :


Неионные ПАВы


Неионные ПАВ представляют собой высокомолекулярные соединения, которые в водном растворе не образуют ионов.


Растворимость этих ПАВ в воде обусловлена наличием в молекуле неионогенных групп – эфирных или гидроксильных (чаще всего полиэтиленгликолиевый остаток).


Неионные ПАВы представляют особую ценность для медицинской промышленности. Это объясняется несколькими причинами:


1. свойства неионных ПАВ, зависящие от соотношения гидрофильной и липофильной частей молекул, можно изменять, укорачивая или удлинняя углеводородную цепочку и меняя степень полимеризации. Таким образом можно получать продукты с разнообразными, а главное, - точно заданными физическими и химическими свойствами.

2. Неионные ПАВы обладают большой устойчивостью к воздействию щелочей, кислот и солей. Они совместимы с большинством лекарственных веществ, могут смешиваться с органическими растворителями.

3. В отличие от ионных ПАВ, неионные ПАВы оказывают меньшее раздражающее действие на кожный покров и слизистые оболочки. Они не агрессивны, повышают резорбцию лекарственных веществ; эффективны как вспомогательные вещества в приготовлении лекарственных форм.


К классу неионных ПАВ, не подвергающихся электролитической диссоциации принадлежат следующие соединения.


Некоторые неионные ПАВ

Наименование ПАВ

Строение

1. Полиэтиленоксидные производные

2. Полиоксипроизводные

3. Алкилоламиды жирных кислот

Полигликолевый эфир полипропиленгликоля


Классификация по характеру использования:


Моющие средства

Эмульгаторы

Смачиватели

Солюблизаторы


Моющие средства - вещества или смеси веществ, применяемые в водных растворах для очистки (отмывки) поверхности твёрдых тел от загрязнений.


Частным случаем эмульгаторов являются пенообразователи и стабилизаторы пены.


Смачиватели – вещества, вызывающие пептизацию или диспергирование, т.е. измельчение твёрдых тел на мелкие частички или жидкой фазы на мелкие капельки.


Смачивание – первая фаза моющего действия, когда загрязнение распадается на отдельные частички или капельки и впоследствии обвалакивается ПАВом (солюблизируется), и удаляется водой.


Солюблизаторы – вещества, помогающие повысить растворение частиц другого вещества, слаборастворимого в данной жидкой среде.

Молекулы солюблизатора обвалакивают плохо растворимую в данной среде частичку и образуют вокруг неё, так называемую мицеллу.


Сама мицелла имеет сродство к среде растворителя и поэтому растворяется в нём, обеспечивая растворение изначально нерастворимой в нём частицы.


Эмульгаторы - вещества, обеспечивающие стабилизацию эмульсий из несмешивающихся жидкостей.


Смачивание, солюблизация, эмульгирование – все эти процессы являются стадиями моющего действия. Любой ПАВ, в той или иной степени, одновременно является и смачивателем, и солюблизатором, и эмульгатором, и моющим веществом. Но при этом, разные ПАВы проявляют разную эффективность на разных стадиях моющего действия. По этой причине они могут быть классифицированы на смачиватели, солюблизаторы, эмульгаторы и моющие средства.


Классификация ПАВ по длине гидрофобной цепи:


Этот вид классификации особенно важен в случаях, когда поверхностно-активные вещества выполняют роль стабилизаторов эмульсий (эмульгаторов ).


Напомним, что эмульгаторы представляют собой дифильные вещества, молекулы которых имеют в своём составе, как полярную (гидрофильную) группу, так и неполярную (гидрофобную) часть.



В зависимости от длины углеводородного (гидрофобного) «хвоста» и силе полярных групп в молекуле такой молекулы, эмульгатор, в целом, будет проявлять или гидрофильные или гидрофобные качества . А от этого всецело будет менятся его роль при стабилизации разного рода эмульсий.


Гидрофильные эмульгаторы.


Эмульгаторы с относительно короткой гидрофобной частью , имеют большее сродство с водой и их, поэтому называют гидрофильными .


Гидрофильные эмульгаторы необходимы для стабилизации эмульсий типа «масло в воде». При добавлении гидрофильного эмульгатора в такую эмульсию вокруг капельки масла образуется сплошной слой эмульгатора, сообщающий ей некоторую гидрофильность и повышающий её устойчивость.



а - гидрофильный эмульгатор,
б - гидрофобный эмульгатор.


Добавление в такую же смесь гидрофобного эмульгатора , большая часть молекулы которого погружается в капельку масла, не обеспечивает устойчивости эмульсии, поскольку часть поверхности капельки остаётся «открытой» и легко может происходить слияние с другими капельками.


Гидрофобные эмульгаторы.
Стабилизация эмульсий типа «вода в масле».


Эмульгаторы, молекулы которых имеют относительно длинную гидрофобную часть, обладают преимущественно гидрофобными свойствами. Такие эмульгаторы называют гидрофобными (или липофильными).


Гидрофобные эмульгаторы стабилизируют эмульсии типа «вода в масле». Их молекула, находящаяся большей своей частью в дисперсионной среде (масле), удерживается на поверхности капелек воды своей гидрофильной группировкой (Рис. а).



а - гидрофобный эмульгатор,
б - гидрофильный эмульгатор.


В результате вокруг каждой капельки воды образуется плотная оболочка из молекул эмульгатора, препятствующая слиянию дисперсной фазы (воды).


Попытка получить эмульсию такого же типа с гидрофильным эмульгатором оказалась бы безуспешной, так как молекулы эмульгатора разместились бы в основном внутри капелек воды
(Рис. б).


Вместо сплошной оболочки вокруг капелек имелись бы лишь выступающие над их поверхностью отдельные гидрофобные группы эмульгатора, не препятствующие коалесценции капелек.


Таким образом, эмульгатор должен обладать сродством к дисперсионной среде .


В зависимости от типа желаемой эмульсии следует брать гидрофильные или гидрофобные эмульгаторы той или иной степени диссоциации.



Гидрофильно-липофильный баланс ПАВ


Для количественной оценки пригодности ПАВов в разных областях использования, в том числе, в качестве эмульгаторов в различных средах был введен параметр, называемый гидрофильно-липофильным балансом (ГЛБ ).


Каждому поверхно-активному веществу соответствует определённая величина ГЛБ .

Самое низкое значение ГЛБ имеет олеиновая кислота C17H33COOH (ГЛБ = 1 ),

а самое высокое - лаурилсульфат натрия C12H25SO4Na (ГЛБ = 40 ).

Для всех остальных ПАВ величина ГЛБ находится в пределах от 1 до 40 .


На основании величин ГЛБ определяется сфера использования ПАВ, например:



ПАВ с липофильными свойствами имеют низкие значения ГЛБ, с гидрофильными – высокие.

Использование ПАВ

Мировое производство ПАВ постоянно возрастает, причём доля неионных и катионных веществ в общем выпуске всё время увеличивается .


В зависимости от назначения и химического состава ПАВы выпускают в виде твёрдых продуктов (кусков, хлопьев, гранул, порошков), жидкостей и полужидких веществ (паст, гелей).


Особое внимание всё больше и больше уделяется производству ПАВ с линейным строением молекул, которые легко подвергаются биохимическому разложению в природных условиях и не загрязняют окружающую среду .


ПАВ находят широкое применение в промышленности, сельском хозяйстве, медицине, быту. Важнейшие области потребления ПАВ: производство мыл и моющих средств для технических и санитарно-гигиенических нужд; текстильно-вспомогательных веществ, т. е. веществ, используемых для обработки тканей и подготовки сырья для них; лакокрасочной продукции.


ПАВ используют во многих технологических процессах химических, нефтехимических, химико-фармацевтических, пищевой промышленности. Их применяют:

  • как присадки, улучшающие качество нефтепродуктов;
  • как флотореагенты при флотационном обогащении полезных ископаемых;
  • компоненты гидроизоляционных и антикоррозионных покрытий и т.д.

ПАВы

  • облегчают механическую обработку металлов и др. материалов,
  • повышают эффективность процессов диспергирования жидкостей и твёрдых тел.
  • Незаменимы как стабилизаторы высококонцентрированных дисперсных систем (суспензий, паст, эмульсий, пен).
  • Кроме того, они играют важную роль в биологических процессах и вырабатываются для «собственных нужд» живыми организмами.
  • Так, поверхностной активностью обладают вещества, входящие в состав жидкостей кишечно-желудочного тракта и крови животных, соков и экстрактов растений.

Воздействие ПАВ на человека

Дерматологическое действие


Подавляющее количество ПАВ при использовании имеет непосредственный контакт с кожей, поэтому следует обращать внимание на их дерматологическое действие.


Известно, что мыла при длительном контакте вызывают раздражение кожи, причём этоя явление более характерно для натриевых солей С8 – С10 насыщенных жирных кислот в сравнении с их высшими гомологами.


Алкилсульфаты с длиной жирной цепи менее С12 и алкиларилсульфонаты раздражают кожу сильнее, чем мыла.


Сульфоэтерифицированные масла и сульфоэфиры, а также продукты конденсации высших жирных кислот и белков не вызывают заметного раздражения кожи, поэтому многие очищающие и моющие композиции включают соединения этих типов.


По убыли раздражающего действия на кожу человека ПАВы можно расположить в следующий ряд:


Катионные > анионные > неионные .

Влияние на слизистую оболочку глаз


Растворы многих ПАВ при попадании в глаза вызывают болезненное ощущение , а при большей концентрации могут повредить глазную ткань.


По силе раздражающего действия на глаза основные группы ПАВ располагаются в том же порядке, что и по их влиянию на кожу.


ПАВ и гемолиз эритроцитов.


Существенным недостатком синтетических ПАВ является то, что внутревенное введение их растворов сопровождается гемолизом (разрушением) эритроцитов.


При этом оболочка эритроцитов разрушается или становится проницаемой для гемоглобина, который выходит из них в окружающую среду.


Гемоглоби́н - сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, клетках, отвечающих за перенос кислорода.


Гемолитическое действие ряда гомологов жирных сульфатов и алкилдиметилбензиламмония хлорида проявляется при концентрациях, более низких по сравнению с критической концентрацией мицеллообразования.


Гемолиз, вызываемый ПАВ, задерживается в присутствии холестерина и фосфолипидов.


Введённые в ток крови ПАВы взаимодействуют не только с эритроцитами, но и с другими составными её частями.


Так, полиоксиэтиленовый эфир алкилфенола в очень высокой степени повышает фагоцитозное действие лейкоцитов, а сульфонаты лигнина действуют как антикоагулянты.


Токсилогическое действие


Все классы ПАВ проходят тщательную проверку на токсичность.


Токсичность (от греч. toxikon - яд) - ядовитость, свойство некоторых химических соединений и веществ биологической природы при попадании в определенных количествах в живой организм (человека, животного и растения) вызывать нарушения его физиологических функций, в результате чего возникают симптомы отравления (интоксикации, заболевания), а при тяжелых - гибель.


В таблице ниже приведены данные об иследованиях некоторых синтетических ПАВ на токсичность:


ЛД50 - (полулетальная доза , также DL50 (от др.-греч. δόσις и лат. lētālis), также LD50 англ. lethal dose, 50 %) - средняя доза вещества, вызывающая гибель половины членов испытуемой группы. Один из наиболее широко применяемых показателей опасности ядовитых и умеренно-токсичных веществ.



Таким образом:

  • наиболее токсичными являются катионные ПАВ ,
  • менее токсичными – анионные и
  • наименее – неионогенные ПАВ.

Следует заметить, что величина LD50 в пределах данного класса ПАВ зависит от молекулярной структуры и от молекулярного веса.


Известно, что полиоксиэтилены с высоким молекулярным весом при приёме внутрь практически нетоксичны, тогда как их низшие гомологи, например диэтиленгликоль при введении с пищей белым крысам замедляли их рост, вызывали их дегенеративные изменения в печени и почках, появление в мочевом пузыре оксалатных камней и новообразований на слизистой оболочке.

Влияние ПАВ на окружающую среду.

В последние несколько десятилетий постоянно росло потребление синтетических моющих средств и соответственно происходило сокращение потребления мыла.


Это обстоятельство породило важную проблемму - проблемму очистки сточных вод .


Дело в том, что многие синтетические моющие средства, в отличие от мыл, не подвержены естественному биохимическому разложению и не не задерживаются фильтрующими установками, и это приводит не только к загрязнению рек и других водоёмов, но и к проникновению ПАВ в источники питьевой воды, что непосредственно влияет на здоровье человека.


Биохимическим разложением называется разложение органических веществ под действием ферментов, производимых бактериями и другими микроорганизмами.


Биоразложение протекает очень медленно, конечными продуктами его являются вода и диоксид углерода.


Для массового производства и потребления моющих средств необходимо применять такие ПАВ и другие моющие вещества, которые были бы подвержены сравнительно быстрому их распаду.


В настоящее время приняты законы, разрешающие производство и применение ПАВ для моющих средств, биоразлагаемых не менее чем на 80%.


Биоразлагаемость некоторых ПАВов.


Хорошей биоразлагаемостью (на 80-90%) обладают алкилбензолсульфонаты с неразветвлённой алкильной цепью (С10 -С14). Она увеличивается при добавлении в раствор глюкозы.


Биоразлагаемость алкилсульфонатов, полученных из нормальных парафинов, достигает 98%, олефинсульфонатов – 90-95% , у алкилсульфатов (С10-С18) – 97,9% .


Неиногенные ПАВ разлагаются легче, чем анионактивные, но их биоразлагаемость понижается с увеличением числа присоединённых групп этиленоксида и разветвлённости гидрофобной части молекулы.


Сульфаты неионогенных ПАВ, полученных на основе прямоцепочных жирных спиртов, легко разлагаются, и длина этиленоксидной цепи не влияет на степень и скорость разложения.


Разные подходы в защите окружающей среды


По данным ряда исследователей, для защиты окружающей среды при производстве и употреблении моющих средств наиболее рациональным путём является замена алкилбензолсульфонатов алкилсульфатами и алкилсульфонатами , а также применение натуральных жирных кислот и их производных, кукурузного крахмала и других, биоразлагаемость которых является стопроцентной.


Наличие моющих средств в сточных водах вызывает обильное пенообразование за счёт остаточных ПАВ, фосфатов и других компонентов моющих средств, что затрудняет биологическую очистку.


Но существует и другой подход, заключающийся в том, что введение в действие эффективных методов очистки сточных вод экономически целесообразнее, чем замена плохоразлагающихся компонентов моющих средств другими, менее эффективными в моющем действии.

Или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остаётся постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразование или агрегация). В результате такой агрегации образуются так называемые мицеллы. Отличительным признаком мицеллообразования служит помутнение раствора ПАВ. Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.

Методы определения ККМ:

  • Метод поверхностного натяжения
  • Метод измерения краевого угла (угла смачивания) с тв. или жидкой поверхностью (Contact angle)
  • Метод вращающейся капли (Spindrop/Spinning drop)

Энциклопедичный YouTube

  • 1 / 5

    Как правило, ПАВ - органические соединения, имеющие амфифильное строение , то есть их молекулы имеют в своём составе полярную часть, гидрофильный компонент (функциональные группы -ОН, -СООН, -SOOOH, -O- и т. п., или, чаще, их соли -ОNa, -СООNa, -SOOONa и т. п.) и неполярную (углеводородную) часть, гидрофобный компонент. Примером ПАВ могут служить обычное мыло (смесь натриевых солей жирных карбоновых кислот - олеата , стеарата натрия и т. п.) и СМС (синтетические моющие средства), а также спирты , карбоновые кислоты , амины и т. п.

    Классификация ПАВ

    Применение высших жирных спиртов для производства поверхностно-активных веществ

    Класс ПАВ Вид ПАВ Химическая формула Реагент для синтеза Схема синтеза Источники
    Неионогенные ПАВ Алкоксилаты этоксилаты R−O−(CH 2 CH 2 O) n H окись этилена ROH + n(CH 2 CH 2)O → RO−(CH 2 CH 2 O) n H

    Реакция протекает в присутствии щёлочи при температуре до 160°С и давлении до 0,55МПа. Обычно используют C 9 -C 15 спирты в сочетании с 6-7 молями окиси этилена.

    :[стр. 31, 35] :[стр. 137-139]
    пропоксилаты R−O−(CH 2 CH(CH 3)O) n H окись пропилена
    бутоксилаты R−O−(CH 2 CH(C 2 H 5)O) n H окись бутилена
    Алкилгликозиды R−(O−C 6 H 10 O 5) n H глюкоза ROH + nC 6 C 12 O 6 → R−(O−C 6 H 10 O 5) n H+nH 2 O
    Реакция протекает в присутствии сульфокислот при температуре до 140°С. Другой вариант - предварительное получение бутиловых эфиров с последующей переэтерификацией. Число гликозидных групп колеблется от 1 до 3.
    :[стр. 38]
    :[стр. 149]
    Анионные ПАВ Карбоксиэтоксилаты R−O−(CH 2 CH 2 O) n СH 2 COOH хлоруксусная кислота RO(CH 2 CH 2 O) n H + ClCH 2 COOH → RO(CH 2 CH 2 O) n СH 2 COOH + HCl

    Реакция протекает в присутствии щёлочи, кислота выделяется подкислением водного раствора и отделением водно-солевой фазы.

    :[стр. 40]
    :[стр. 126-127]
    Фосфаты и полифосфаты ROP(OH) 2 O; (RO) 2 P(OH)O оксид фосфора(V) 3ROH + P 2 O 5 → ROP(OH) 2 O +(RO) 2 P(OH)O

    Добавление порошкообразного оксида фосфора к безводным спиртам в безводной среде при 50-70 °С и интенсивном перемешивании .

    :[стр. 54]
    :[стр. 122-123]
    Сульфосукцинаты ROC(O)CH 2 CH(SO 3 Na)COOH; ROC(O)CH 2 CH(SO 3 Na)COOR малеиновый ангидрид , сульфит натрия ROH + (COCH=CHCO)O → ROC(O)CH=CHCOOH
    ROC(O)CH=CHCOOH + Na 2 SO 3 → ROC(O)CH 2 CH(SO 3 Na)COONa
    Этерификация спиртов малиновым ангидридом (T до 100 °С) и дальнейшее присоединение к эфиру сульфита натрия пр нагревании.
    :[стр. 52-53]
    Алкилсульфаты R−O−SO 3 H серная кислота , оксид серы(VI) , хлорсульфоновая кислота ROH + SO 3 → ROSO 3 H
    Прямое сульфирование спиртов при последующей нейтрализации раствора щелочью.
    :[стр. 55-56]
    Алкилэфиросульфаты R−(CH 2 CH 2 O) n OSO 3 H

    Также в производстве ПАВ используются и некоторые другие спирты: глицерин (сложные эфиры с жирными кислотами - эмульгаторы), сорбитол (сорбитаны), моноэтаноламин и диэтаноламин (алканоламиды).

    Влияние ПАВ на компоненты окружающей среды

    ПАВ делятся на те, которые быстро разрушаются в окружающей среде и те, которые не разрушаются и могут накапливаться в организмах в недопустимых концентрациях. Один из основных негативных эффектов ПАВ в окружающей среде - понижение поверхностного натяжения . Например в океане изменение поверхностного натяжения приводит к снижению показателя удерживания CO 2 и кислорода в массе воды. Только немногие ПАВ считаются безопасными (алкилполиглюкозиды), так как продуктами их деградации являются углеводы . Однако при адсорбировании ПАВ на поверхности частичек земли/песка степень/скорость их деградации снижаются многократно. Так как почти все ПАВ, используемые в промышленности и домашнем хозяйстве, имеют положительную адсорбцию на частичках земли, песка, глины, при нормальных условиях они могут высвобождать (десорбировать) ионы тяжёлых металлов , удерживаемые этими частичками, и тем самым повышать риск попадания данных веществ в организм человека.

    Поверхностно-активные вещества (ПАВ) – это такие химические вещества, которые способны концентрироваться на границах фаз и снижать поверхностное (межфазное) натяжение. ПАВ применяются в фармацевтических и косметических средствах, при производстве шампуней и пеномоющих средств.

    Химическое строение ПАВ

    Молекула ПАВ состоит из гидрофобного углеводородного радикала и гидрофильной полярной (функциональной) группы, т.е. молекула дифильная, вследствие чего она обладает высокой адсорбционной способностью. Так, например, в эмульсии типа «вода/масло» на границе раздела фаз гидрофильная группа молекулы ПАВ ориентируется к воде, а углеводородная часть - к маслу. А межфазное натяжение при этом снижается, что и обеспечивает в воде стабилизацию капель масла.

    Моющее действие ПАВ основано на том, что поверхностно-активные ингредиенты лосьонов, шампуней, мыл адсорбируются на поверхности таких загрязнений как жир и твердые частицы, обволакивают и облегчают их перевод в моющий раствор. ПАВ облегчают растекание по поверхности кожи воды или средства на их основе за счет уменьшения межфазного натяжения.

    Виды поверхностно-активных веществ

    Классификация ПАВ основана на делении в зависимости от природы полярной группы: неионогенные, не диссоциирующие в воде на ионы, и ионогенные, которые в зависимости от образующегося при диссоциации в воде иона заряда, подразделяются на: анионные, катионные, амфотерные.

    Анионные ПАВ при их растворении в воде образуют отрицательно заряженные ионы с длинной углеводородной цепочкой (органические анионы) и обычный катион. Анионные ПАВ-эмульгаторы весьма эффективны:

    • при создании эмульсий типа «масло/вода»;
    • при диспергировании ряда порошкообразных материалов;
    • при использовании в пеномоющих средствах для обеспечения высокого пенообразования в жесткой воде.

    В качестве примера анионного поверхностно-активного вещества, который часто используется в составе косметических рецептур, в частности моющих средств, можно привести лаурилэтокисульфат натрия (по номенклатуре INCI «Sodium Laureth Sulfate»). Его получают сульфатированием насыщенных или ненасыщенных первичных высших спиртов с последующей нейтрализацией натриевой щелочью, аммиаком или триэтаноламином. Часто производится в виде пастообразной массы, содержащей до 70% основного вещества.

    Катионные ПАВ при их растворении в воде образуют положительно заряженные ионы (органические катионы) и низкомолекулярный анион. К катионным ПАВ относятся соли жирных аминов и четвертичных аммониевых оснований. Катионные эмульгаторы, по сравнению с анионными, менее эффективны, так как снижают поверхностное натяжение в меньшей степени. Но они проявляют бактерицидную активность, взаимодействуя с клеточными белками бактерий. Катионные ПАВ активно используются в средствах ухода за волосами (шампуни, бальзамы-ополаскиватели, кондиционеры для волос). Алифатические катионные ПАВ с одним и двумя углеводородными хвостами являются хорошими антистатиками и используются в косметике для волос.

    Амфотерные ПАВ в зависимости от рН среды ведут себя в щелочной среде как анионактивные или в кислой среде как катионактивные. В их молекулах присутствуют функциональные группы, которые способны иметь как отрицательный, так и положительный заряд. Такие ПАВ хорошо совместимы с катионными и анионными. Амфотерные ПАВ дерматологически мягко действуют на кожу, поэтому часто применяются в детских шампунях "без слез" и средствах для чувствительной кожи. Так, например, в сочетании с анионным ПАВ лаурилсульфатом натрия, практически полностью смягчают его дерматологическую жесткость. Амфотерные ПАВ обладают хорошим пенообразованием.

    Бетаины - одна из разновидностей амфотерных ПАВ. Они относятся к мягким и высокопенным ПАВ. Амфотерное ПАВ кокамидопропилбетаин (Дехитон/ Бетадет) включают в состав косметики в производстве шампуней, гелей и крем-гелей, жидкого мыла, очищающих пен для ванн. Это ПАВ способствует совместимости косметического средства с кожей, при этом улучшает вязкость и пенообразование этого средства. Таким образом, Дехитон, особенно в детских пеномоющих продуктах, является смягчающим компонентом и способствует безопасности применения моющего средства.

    Неионогенные (неионные) ПАВ – это ПАВ, которые при растворении в воде не образуют ионов. Они, по сравнению с анионными, имея более слабую пенообразующую способность, оказывают на кожу более мягкое воздействие. Такие ПАВ часто применяются как эмульгаторы, диспергаторы, солюбилизаторы, а также в качестве со-ПАВ, стабилизаторов пены, смачивателей и т.д. В качестве примера неионогенного ПАВ можно привести диэтаноламиды жирных кислот. Используются в производстве шампуней и пеномоющих средств в количестве до 3% в качестве пережиривающей добавки, стабилизатора пены и загустителя.

    В шампунях российского производства для достижения необходимых потребительских свойств и улучшения качества используются различные сочетания ПАВ в зависимости от назначения косметического средства.

    ПАВ, применяемые в косметической промышленности, должны соответствовать Единым санитарно-эпидемиологическим и гигиеническим требованиям к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю).

    Преимущества использования ПАВ:

    • приводят к стабилизации дисперсной системы, делают невозможным слипание и коагуляцию частиц дисперсной фазы;
    • облегчают процесс диспергирования и получения косметических композиций;
    • улучшают смачиваемость и растекаемость косметических веществ по коже;
    • обеспечивают устойчивость обратных эмульсий;
    • в составе пеномоющих средств улучшают их пенообразование и повышают устойчивость пены при использовании.

    Литература

    Поверхностно-активные вещества и композиции. Справочник. Под редакцией М.Ю.Плетнева 2002. – с.40-44.

    Основы косметической химии. Базовые положения и современные ингредиенты. Ред. Пучкова Т.В. 2011, с.122-133.