Как вести данные для манна уитни. Критерий U Манна — Уитни

Методы математической обработки в психологии

ГЛАВА I. ОСНОВНЫЕ ПОНЯТИЯ, ИСПОЛЬЗУЕМЫЕ В МАТЕМАТИЧЕСКОЙ ОБРАБОТКЕ ПСИХОЛОГИЧЕСКИХ ДАННЫХ

Возможности и ограничения параметрических и непараметрических критериев

ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ
1. Позволяют прямо оценить различия в средних, полученных в двух вы­борках (t - критерий Стьюдента). Позволяют оценить лишь средние тенден­ции, например, ответить на вопрос, чаще ли в выборке А встречаются более высо­кие, а в выборке Б - более низкие значе­ния признака (критерии Q, U, φ и др.).
2. Позволяют прямо оценить различия в дисперсиях (критерий Фишера). Позволяют оценить лишь различия в диа­пазонах вариативности признака (критерий φ).
3. Позволяют выявить тенденции изменения признака при переходе от условия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распреде­ления признака. Позволяют выявить тенденции изменения признака при переходе от условия к усло­вию при любом распределении признака (критерии тенденций L и S).
4. Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ). Эта возможность отсутствует.
5. Экспериментальные данные должны отвечать двум, а иногда трем, усло­виям: а) значения признака измерены по интервальной шкале; б) распределение признака является нормальным; в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса. Экспериментальные данные могут не от­вечать ни одному из этих условий: а) значения признака могут быть пред­ставлены в любой шкале, начиная от шка­лы наименований; б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке; в) требование равенства дисперсий отсут­ствует.
6. Математические расчеты довольно сложны. Математические расчеты по большей час­ти просты и занимают мало времени (за исключением критериев χ 2 и λ).
7. Если условия, перечисленные в п.5, выполняются, параметрические кри­терии оказываются несколько более мощными, чем непараметрические. Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем пара­метрические, так как они менее чувстви­тельны к «засорениям».

Классификация задач и методов их решения

Задачи Условия Методы
1.Выявление различий в уровне исследуемого признака а) 2 выборки испытуемых Q- критерий Розенбаума; U - критерий Манна-Уитни; φ* - критерий (угловое преобразование Фишера)
б) 3 и более выбо­рок испытуемых S - критерий тенденций Джонкира; Н - критерий Крускала-Уоллиса.
2. Оценка сдвига зна­чений исследуемого признака а) 2 замера на од­ной и той же вы­борке испытуемых Т - критерий Вилкоксона; G - критерий знаков; φ* - критерий (угловое преобразование Фишера).
б) 3 и более заме­ров на одной и той же выборке испы­туемых χ л 2 - критерий Фридмана; L - критерий тенденций Пейджа.
3. Выявление различий в распределении а) при сопоставлении эмпирического признака распределения с теоретическим χ 2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; m - биномиальный критерий.
б) при сопоставле­нии двух эмпириче­ских распределений χ 2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; φ* - критерий (угловое преобразование Фишера).
4.Выявление степени согласованности изменений а) двух признаков
б) двух иерархий или профилей r s - коэффициент ранговой корреляции Спирмена.
5. Анализ изменений признака под влия­нием контролируе­мых условий а) под влиянием одного фактора S- критерий тенденций Джонкира; L - критерий тенденций Пейджа; однофакторный дисперсионный анализ Фишера.
б) под влиянием двух факторов одновременно Двухфакторный дисперсионный анализ Фишера.

ГЛАВА II. ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В УРОВНЕ ИССЛЕДУЕМОГО ПРИЗНАКА

Принятие решения о выборе метода математической об­работки

Если данные уже получены, то вам предлагается следующий ал­горитм определения задачи и метода.

АЛГОРИТМ 2

Принятие решения о задаче и методе обработки на стадии планирования исследования

1. Определите, какая модель вам кажется наиболее подходящей для доказательства ваших научных предположений.

2. Внимательно ознакомьтесь с описанием метода, примерами и задачами для самостоятельного решения, которые к нему прилагаются.

3. Если вы убедились, что это то, что вам нужно, вернитесь к разделу «Ограничения критерия» и решите, сможете ли вы собрать данные, которые будут отвечать этим ограничениям (большие объемы выборок, наличие не­скольких выборок, монотонно различающихся по какому-либо признаку, напри­мер, по возрасту и т.п.).

4. Проводите исследование, а затем обрабатывайте полученные данные по заранее! выбранному алгоритму, если вам удалось выполнить ограничения.

5. Если ограничения выполнить не удалось, обратитесь к алгоритму 1.


Алгоритм принятия решения о выборе критерия для сопоставлений


Q - критерий Розенбаума

Назначение критерия . Критерий используется для оценки различий между двумявы­борками по уровнюкакого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.

Пример.

У предполагаемых участников психологического эксперимента, моделирующего деятельность воздушного диспетчера, был измерен уро­вень вербального и невербального интеллекта с помощью методики Д. Векслера. Было обследовано 26 юношей в возрасте от 18 до 24 лет (средний возраст 20,5 лет). 14 из них были студентами физического факультета, а 12 - студентами психологического факультета Ленинград­ского университета. Можно ли утверждать, что одна из групп превосходит другую по уровню вербального интеллекта?

АЛГОРИТМ 3 Подсчет критерия Q Розенбаума 1. Проверить, выполняются ли ограничения: n 1 ,n 2 ≥11, n 1 ,n 2 ≈n 2. 2. Упорядочить значения отдельно в каждой выборке по степени воз­растания признака. Считать выборкой 1 ту выборку, значения в ко­торой предположительно выше, а выборкой 2 - ту, где значения предположительно ниже. 3. Определить самое высокое (максимальное) значение в выборке 2. 4. Подсчитать количество значений в выборке 1, которые выше макси­мального значения в выборке 2. Обозначить полученную величину как S 1 . 5. Определить самое низкое (минимальное) значение в выборке 1. 6. Подсчитать количество значений в выборке 2, которые ниже мини­мального значения выборки 1. Обозначить полученную величину как S 2 . 7. Подсчитать эмпирическое значение Q по формуле: Q=S 1 +S2 8. По Табл. I определить критические значения Q для данных n 1 и n 2 . Если Q эмп равно Q 0,05 или превышает его, уровень признака в выборке 1 превышает уровень признака в вы­борке 2. 9. При n 1 и n 2 >26сопоставить полученное эмпирическое значение с Q к p = 8 (р≤ 0,05) и Q к p = 10 (p≤ 0,01). Если Q эмп ≥ Q к p = 8, уровень признака в выборке 1 превышает уровень признака в вы­борке 2.

Таблица I. Критические значения критерия Q Розенбаума

n
p=0,05
7
p=0,01

U - критерий Манна-Уитни

Назначение критерия . Критерий предназначен для оценки различий между двумя вы­борками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n 1 ,n 2 ≥ 3 или n 1 =2, n 2 ≥5, и является более мощным, чем критерий Ро­зенбаума.

Пример

Уровень вербального интеллекта в выборке студентов физического факультета выше чем студентов психологического факультета Ленинградского университета. Попытаемся установить теперь, воспроизводится ли этот резуль­тат при сопоставлении выборок по уровню невербального интеллекта. Можно ли утверждать, что одна из выборок превосходит другую по уровню невербального интеллекта?

Правила ранжирования

1. Меньшему значению начисляется меньший ранг. Наименьшему значению начисляется ранг 1. Наибольшему значению начисляется ранг, соответствующий количе­ству ранжируемых значений. Например, если n=7, то наибольшее значение получит ранг 7, за возможным исключением для тех слу­чаев, которые предусмотрены правилом 2.

2. В случае, если несколько значений равны, им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны.

Допустим, следующие 2 значения равны 12 сек. Они должны были бы получить ранги 4 и 5, но, поскольку они равны, то получают средний ранг:

3. Общая сумма рангов должна совпадать с расчетной, которая опре­деляется по формуле:

где N - общее количество ранжируемых наблюдений (значений). Несовпадение реальной и расчетной сумм рангов будет свидетельст­вовать об ошибке, допущенной при начислении рангов или их сум­мировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.

АЛГОРИТМ 4

Подсчет критерия U Манна-Уитни.

1. Перенести все данные испытуемых на индивидуальные карточки.

2. Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 - другим, например синим.

3. Разложить все карточки в единый ряд по степени нарастания при­знака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой.

4. Проранжировать значения на карточках, приписывая меньшему зна­чению меньший ранг. Всего рангов получится столько, сколько у нас (n 1 +п 2).

5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие - в другой.

7. Определить большую из двух ранговых сумм.

8. Определить значение U по формуле:

где n 1 - количество испытуемых в выборке 1;

n 2 - количество испытуемых в выборке 2;

Т х - большая из двух ранговых сумм;

n х - количество испытуемых в группе с большей суммой рангов.

9. Определить критические значения U по Табл. II. Если U эмп U к p _ 005 , различия достоверны. Чем меньше значения U, тем достоверность различий выше.


Таблица II. Критические значения критерия U Манна-Уитни

для уровней статистической значимости р≤0,05 и р≤0,01.

n1
n2 p=0,05
-
-
p=0,01
- -
- -
-
-
-
-
-
-

Таблица II. Продолжение

n 1
n 2 p=0,05
р=0,01

Таблица II. Продолжение

Непараметрический критерий Манна-Уитни используется для сравнения двух независимых выборок. При этом совсем не важно, чтобы выборки были одинакового размера. Напомним, что все элементы из первой выборки сравниваются со всеми элементами второй выборки. Если какой-то элемент больше сравниваемого, то ему засчитывается 1 балл. Если элементы равны, то им засчитывается по 0,5 балла. Затем баллы элементов для каждой выборки суммируются, а меньшая полученная сумма является критерием – U-статистика. Если выборки не имеют существенных различий, то значение критерия должно быть больше критического значения для выборок соответствующего размера.

Примечание.
Здесь приведено очень упрощенное описание критерия Манна-Уитни, т.к. подразумевается, что Вы уже с ним знакомы.

Пример расчета критерия Манна-Уитни

У нас есть небольшой набор данных с эффективностью продаж двух продавцов:

Мы хотим определить, какой из продавцов работает лучше, и выплатить лучшему продавцу повышенную премию. Сделаем это с помощью надстройки от office-menu.

Перейдем на вкладку надстройки и кликнем на ленте пункт с нужным критерием, после чего будет предложено выбрать диапазон с данными для анализа. Диапазон выбирается без заголовков, первый столбец должен содержать наименование выборок, второй значения для них.

После клика по кнопке «Готово» откроется новая книга Excel с готовым расчетом и вспомогательной таблицей.

Из анализа видно, несмотря на то что продавец Иван хоть и имеет низкую конверсию в сравнении с Петром, это не говорит о том, что он работает хуже, а высокая конверсия Петра может быть выбросами в данных. Возможно на больших выборках результаты поменяются, но на текущем наборе говорить о существенных различиях нельзя.

Для того, чтобы использовать описанные в данной категории функции, скачайте и установите нашу надстройку.
Работа надстройки была успешно протестирована на версиях Excel: 2007, 2010 и 2013. В случае возникновения проблем с ее использованием, сообщайте .

  • < Назад

Если материалы office-menu.ru Вам помогли, то поддержите, пожалуйста, проект, чтобы мы могли развивать его дальше.

U-критерий Манна-Уитни используется для оценки различий между двумя малыми выборками (n1,n2≥3 или n1=2, n2≥5) по уровню колич

U -критерий Манна-Уитни используется для оценки различий между двумя малыми выборками(n 1 , n 2 ≥3 или n 1 =2, n 2 ≥5) по уровню количественно измеряемого признака. При этом первой выборкой принято считать ту, где значение признака больше.

Нулевая гипотеза H 0 ={уровень признака во второй выборке не ниже уровня признака в первой выборке}; альтернативная гипотеза – H 1 ={уровень признака во второй выборке ниже уровня признака в первой выборке}.

Рассмотрим алгоритм применения U-критерия Манна-Уитни:

1. Перенести все данные испытуемых на индивидуальные карточки, пометив карточки 1-й выборки одним цветом, а 2-й – другим.

2. Разложить все карточки в единый ряд по степени возрастания признака и проранжировать в таком порядке.

3. Вновь разложить карточки по цвету на две группы.

5. Определить большую из двух ранговых сумм .

6. Вычислить эмпирическое значение U :

, где - количество испытуемых в - выборке (i = 1, 2), - количество испытуемых в группе с большей суммой рангов.

7. Задать уровень значимости α и, используя специальную таблицу, определить критическое значение U кр (α) . Если , то H 0 на выбранном уровне значимости принимается.

Рассмотрим использование U критерия Манна-Уитни на примере.

Проведение срезовой контрольной работы по математике (алгебра и геометрия) в средней общеобразовательной школе дало следующие результаты по 10-балльной шкале для класса, обучающегося по программе «Развивающего обучения» (7 «Б»), и класса, обучающегося по традиционной системе (7 «А»):

Ученик \ Класс

7 «А» (баллы)

7 «Б» (баллы)

Определите, превосходят ли учащиеся 7 «Б» учащихся 7 «А» по уровню знаний по математике.

Сравнение результатов показывает, что баллы, полученный за контрольную работу, в 7 «Б» классе несколько выше, поэтому первой считаем выборку результатов 7 «Б» класса. Таким образом, нам требуется определить, можно ли считать имеющуюся разницу между баллами существенной. Если можно, то это будет означать, что класс, обучающийся по системе «развивающего обучения» имеет более качественные знания по математике. В противном случае, на выбранном уровне значимости различие окажется несущественным.

Для оценки различий между двумя малыми выборками (в данном примере их объёмы равны: n 1 =12, n 2 =11) используем критерий Манна-Уитни. Проранжируем представленную таблицу:

7 «Б» (баллы)

ранг

7 «А» (баллы)

ранг

22,5

22,5

20.5

20.5

16.5

16.5

16.5

16.5

11.5

16.5

11.5

16.5

11.5

11.5

Сумма:

1 68 .5

Сумма:

107.5

При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких учеников ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания. Например, 4 балла получили 3 ученика (см. таблицу). Значит, первые 3 позиции в расположении займёт балл, равный 4. Поэтому ранг для 4 баллов – это среднее арифметическое для позиций 1, 2 и 3, или: . Аналогично рассуждаем при вычислении ранга для балла, равного 5. Такой балл получили двое учащихся. Значит, при распределении по возрастанию первые три позиции занимает балл, равный 4, а четвёртую и пятую позиции займёт балл, равный 5. Поэтому его ранг будет равен среднему арифметическому между числами 4 и 5, т.е. 4.5.

Используя предложенный принцип ранжирования, получим таблицу рангов. Заметим, что выбор среднего арифметического в качестве ранга применяется при любом ранжировании, в том числе необходимого и для вычисления других критериев достоверности или же коэффициента корреляции Спирмена.

Чтобы использовать критерий Манна-Уитни, рассчитаем суммы рангов рассматриваемых выборок (см. таблицу). Сумма для первой выборки равна 168,5, для второй – 107,5. Обозначим наибольшую из этих сумм через T x (T x =168.5). Среди объёмов n 1 и n 2 выборок наибольший обозначим n x . Этих данных достаточно, чтобы воспользоваться формулой расчёта эмпирического значения критерия:

T x =168,5, n x =12>11= n 2 . Тогда:

Критическое значение критерия находим по специальной таблице. Пусть уровень значимости равен 0.05.

Гипотеза H 0 о незначительности различий между баллами двух классов принимается, если u кр < u эмп . В противном случае H 0 отвергается и различие определяется как существенное.

Следовательно, различия в уровне знаний по математике среди учащихся можно считать несущественными.

Схема использования критерия Манна-Уитни выглядит следующим образом


Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо количественно измеренного признака, при распределении вариант отличном от нормального . Более того, он позволяет выявлять различия между малыми выборками (когда n 1 , n 2 ³3 или n 1 =2, n 2 ³5). Этот метод определяет насколько слабо перекрещиваются (совпадают) значения между двумя выборками. Чем меньше перекрещивающихся значений, тем более вероятно, что различия достоверны.

Чем меньше U эмп тем более вероятно, что различия достоверны.

Нулевая гипотеза: уровень признака в выборке 2 не ниже уровня признака в выборке 1.

Прежде чем проводить оценку критерием U необходимо провести ранжирование.

ОПРЕДЕЛЕНИЕ: Ранжирование – распределение вариант внутри вариационного ряда от меньших величин к большим.

Правила ранжирования:

1. Меньшему значению начисляется меньший ранг, как правило, это 1. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений (если n=10, то наибольшее значение получит ранг 10).

2. Если несколько значений равны, им начисляется ранг, представляющийсобой среднее значение из тех рангов, которые они получили бы, если бы не были равны:

3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле: , где N- общее количество ранжируемых значений. Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.

Пример .

Проранжируем следующий ряд.

По формуле проверим правильность ранжирования.

. Определим сумму рангов: 1+2,5+2,5+4+5+6+7=28.

Общая сумма рангов совпадает с расчетной. Следовательно мы правильно проранжировали.

Схема подсчета критерия Манна-Уитни:

Чем меньше значения U , тем достоверность различий выше и тем больше уверенности в отклонении нулевой гипотезы.


3 пример .

При заболеваниях сетчатки повышается проницаемость ее сосудов. Исследователи измерили проницаемость сосудов сетчатки у здоровых и у больных с ее поражением. Полученные результаты приведены в таблице.

Проверить, подтверждают ли эти данные гипотезу о различии в проницаемости сосудов сетчатки.

Нулевая гипотеза : проницаемость сосудов сетчатки при заболеваниях сетчатки у больных не больше, чем у здоровых, (нет статистического различия между двумя выборками).

Альтернативная гипотеза : проницаемость сосудов сетчатки при заболеваниях сетчатки у больных больше, чем у здоровых, (есть статистическое различие между двумя выборками).

Здоровые больные
Порядковый номер Ранг проницаемость сосудов сетчатки Порядковый номер Ранг
0,5 1,2 6,5
0,7 2,5 1,4
0,7 2,5 1,6
1,0 4,5 1,7
1,0 4,5 1,7
1,2 6,5 1,8
1,4 2,2 18,5
1,4 2,3
1,6 2,4
1,6 6,4
1,7
2,2 18,5 23,6

​ U-критерий Манна-Уитни – непараметрический статистический критерий, используемый для сравнения двух независимых выборок по уровню какого-либо признака, измеренного количественно. Метод основан на определении того, достаточно ли мала зона перекрещивающихся значений между двумя вариационными рядами (ранжированным рядом значений параметра в первой выборке и таким же во второй выборке). Чем меньше значение критерия, тем вероятнее, что различия между значениями параметра в выборках достоверны.

1. История разработки U-критерия

Данный метод выявления различий между выборками был предложен в 1945 году американским химиком и статистиком Фрэнком Уилкоксоном .
В 1947 году он был существенно переработан и расширен математиками Х.Б. Манном (H.B. Mann) и Д.Р. Уитни (D.R. Whitney), по именам которых сегодня обычно и называется.

2. Для чего используется U-критерий Манна-Уитни?

U-критерий Манна-Уитни используется для оценки различий между двумя независимыми выборками по уровню какого-либо количественного признака.

3. В каких случаях можно использовать U-критерий Манна-Уитни?

U-критерий Манна-Уитни является непараметрическим критерием, поэтому, в отличие от t-критерия Стьюдента , не требует наличия нормального распределения сравниваемых совокупностей.

U-критерий подходит для сравнения малых выборок: в каждой из выборок должно быть не менее 3 значений признака. Допускается, чтобы в одной выборке было 2 значения, но во второй тогда должно быть не менее пяти.

Условием для применения U-критерия Манна-Уитни является отсутствие в сравниваемых группах совпадающих значений признака (все числа – разные) или очень малое число таких совпадений.

Аналогом U-критерия Манна-Уитни для сравнения более двух групп является Критерий Краскела-Уоллиса .

4. Как рассчитать U-критерий Манна-Уитни?

Сначала из обеих сравниваемых выборок составляется единый ранжированный ряд , путем расставления единиц наблюдения по степени возрастания признака и присвоения меньшему значению меньшего ранга. В случае равных значений признака у нескольких единиц каждой из них присваивается среднее арифметическое последовательных значений рангов.

Например, две единицы, занимающие в едином ранжированном ряду 2 и 3 место (ранг), имеют одинаковые значения. Следовательно, каждой из них присваивается ранг равный (3 + 2) / 2 = 2,5.

В составленном едином ранжированном ряду общее количество рангов получится равным:

N = n 1 + n 2

где n 1 - количество элементов в первой выборке, а n 2 - количество элементов во второй выборке.

Далее вновь разделяем единый ранжированный ряд на два, состоящие соответственно из единиц первой и второй выборок, запоминая при этом значения рангов для каждой единицы. Подсчитываем отдельно сумму рангов, пришедшихся на долю элементов первой выборки, и отдельно - на долю элементов второй выборки. Определяем большую из двух ранговых сумм (T x ) соответствующую выборке с n x элементами.

Наконец, находим значение U-критерия Манна-Уитни по формуле:

5. Как интерпретировать значение U-критерия Манна-Уитни?

Полученное значение U-критерия сравниваем по таблице для избранного уровня статистической значимости (p=0.05 или p=0.01 ) с критическим значением U при заданной численности сопоставляемых выборок:

  • Если полученное значение U меньше табличного или равно ему, то признается статистическая значимость различий между уровнями признака в рассматриваемых выборках (принимается альтернативная гипотеза). Достоверность различий тем выше, чем меньше значение U.
  • Если же полученное значение U больше табличного, принимается нулевая гипотеза.