Закон распределения релея. Распределение рэлея

Реализация некоторых методов видоизменения гистограмм в системе Matlab

Как уже не раз отмечалось, одной из важнейших характеристик изображения является гистограмма распределения яркостей его элементов. Ранее мы уже кратко рассматривали теоретические основы видоизменения гистограмм, поэтому в этой работе больше внимания уделим практическим аспектам реализации некоторых методов преобразования гистограмм в системе Matlab. При этом отметим, что видоизменение гистограмм является одним из методов улучшения визуального качества изображений.

Шаг 1: Считывание исходного изображения.

Считаем из файла исходное изображение в рабочее пространство Matlab и выведем его на экран монитора.

L=imread("lena.bmp");

figure, imshow(L);

Так как исследуемое исходное изображение полутоновое, то будем рассматривать только одну составляющую многомерного массива .

Рис. 1. Исходное изображение.

Поскольку в работе рассматриваются гистограммные методы преобразования, то построим также гистограмму исходного изображения.

Рис.2. Гистограмма исходного изображения.

Шаг 2: Равномерное преобразование гистограммы.

Равномерное преобразование гистограммы осуществляется по формуле

где ,- минимальное и максимальное значения элементов массива интенсивностейисходного изображения;

Функция распределения вероятностей исходного изображения, которая аппроксимируется гистограммой распределения . Другими словами, речь идет о кумулятивной гистограмме изображения.

В среде Matlab это можно реализовать следующим образом. Вычисляем кумулятивную гистограмму исходного изображения

CH=cumsum(H)./(N*M);

Вектор значений гистограммы исходного изображения, а ,- размеры данного изображения, которые определяются с помощью функции size

L1(i,j)=CH(ceil(255*L(i,j)+eps));

figure, imshow(L1);

Значение eps используется вместе с функцией ceil для того, чтобы избежать присвоения индексам кумулятивной гистограммы нулевых значений. Результат применения метода равномерного преобразования гистограммы представлен на рис. 3.

Рис. 3. Исходное изображение, обработанное методом равномерного преобразования гистограммы.

Гистограмма, преобразованного согласно формуле (1) изображения, представлена на рис. 4. Она действительно занимает почти весь динамический диапазон и является равномерной.

Рис. 4. Гистограмма изображения, представленного на рис. 3.

О равномерной передаче уровней интенсивностей элементов изображения свидетельствует также и его кумулятивная гистограмма (рис. 5).

Рис.5. Кумулятивная гистограмма изображения, представленного на рис. 3.

Шаг 3: Экспоненциальное преобразование гистограммы.

Экспоненциальное преобразование гистограммы осуществляется по формуле

где - некоторая константа, характеризующая крутизну экспоненциального преобразования.

В Matlab преобразования по формуле (2) можно реализовать следующим образом.

L2(i,j)=-(1/alfa1)*log10(1-CH(ceil(255*L(i,j)+eps)));

figure, imshow(L2);

Рис. 6. Исходное изображение после обработки методом экспоненциального преобразования гистограммы.

Гистограмма изображения, обработанного методом экспоненциального преобразования, представлена на рис. 7.

Рис. 7. Гистограмма изображения, обработанного методом экспоненциального преобразования.

Наиболее четко экспоненциальный характер преобразований проявляется на кумулятивной гистограмме обработанного изображения, которая представлена на рис. 8.

Рис. 8. Кумулятивная гистограмма изображения, обработанного методом экспоненциального преобразования.

Шаг 4: Преобразование гистограммы по закону Рэлея.

Преобразование гистограммы по закону Рэлея осуществляется согласно выражению

,

где - некоторая константа, характеризующая гистограмму распределения интенсивностей элементов результирующего изображения.

Приведем реализацию данных преобразований в среде Matlab.

L3(i,j)=sqrt(2*alfa2^2*log10(1/(1-CH(ceil(255*L(i,j)+eps)))));

figure, imshow(L3);

Рис. 9. Исходное изображение, обработанное методом преобразования гистограммы по закону Рэлея.

Гистограмма изображения, обработанного методом преобразования по закону Рэлея, представлена на рис. 10.

Рис. 10. Гистограмма изображения, обработанного методом преобразования по закону Рэлея.

Кумулятивная гистограмма изображения, обработанного методом преобразования по закону Рэлея, представлена на рис. 11.

Рис. 11. Кумулятивная гистограмма изображения, обработанного методом преобразования по закону Рэлея.

Шаг 5: Преобразование гистограммы по закону степени .

Преобразование гистограммы изображения по закону степени реализуется согласно выражению

.

В среде Matlab этот метод можно реализовать следующим образом.

L4(i,j)=(CH(ceil(255*L(i,j)+eps)))^(2/3);

figure, imshow(L4);

Рис. 12. Исходное изображение, обработанное методом преобразования гистограммы по закону степени .

Гистограмма распределения интенсивностей элементов обработанного изображения представлена на рис. 13.

Рис. 13. Гистограмма изображения, обработанного методом преобразования гистограммы по закону степени .

Кумулятивная гистограмма обработанного изображения, которая наиболее четко демонстрирует характер передачи уровней серого, представлена на рис. 14.

Рис. 14. Кумулятивная гистограмма изображения, обработанного методом преобразования по закону степени .

Шаг 6: Гиперболическое преобразование гистограммы.

Гиперболическое преобразование гистограммы реализуется согласно формуле

где - некоторая константа, относительно которой осуществляется гиперболическое преобразование гистограммы. Фактически параметрравен минимальному значению интенсивности элементов изображения.

В среде Matlab этот метод может быть реализован следующим образом

L5(i,j)=.01^(CH(ceil(255*L(i,j)+eps))); % в данном случае А=0,01

figure, imshow(L5);

Рис. 15. Исходное изображение, обработанное методом гиперболического преобразования.

Гистограмма распределения интенсивностей элементов обработанного таким образом изображения представлена на рис. 16.

Рис. 16. Гистограмма изображения, обработанного методом гиперболического преобразования.

Кумулятивная гистограмма, форма которой соответствует характеру проводимых преобразований, представлена на рис. 17.

Рис. 17. Кумулятивная гистограмма изображения, обработанного методом гиперболического преобразования.

В данной работе были рассмотрены некоторые методы видоизменения гистограмм. Результатом применения каждого метода является то, что гистограмма распределения яркостей элементов обработанного изображения принимает определенную форму. Такого рода преобразования могут применяться для устранения искажений при передаче уровней квантирования, которым были подвергнуты изображения на этапе формирования, передачи или обработки данных.

Отметим также, что рассмотренные методы могут быть реализованы не только глобально, но и в скользящем режиме. Это приведет к усложнению вычислений, поскольку нужно будет анализировать гистограмму на каждом локальном участке. Однако, с другой стороны, такие преобразования, в отличие от глобальной реализации, позволяют увеличивать детальность локальных участков.

Федеральное агентство по образованию

ГОУ ВПО « Уральский государственный технический университет-УПИ имени первого Президента России Б.Н. Ельцина»

Кафедра теоретических основ радиотехники

РАСПРЕДЕЛЕНИЕ РЭЛЕЯ

по дисциплине «Вероятностные модели»

Группа: Р-37072

Студентка: Решетникова Н.Е.

Преподаватель: Трухин М.П.

Екатеринбург, 2009 год

История появления 3

Функция плотности вероятности 4

Интегральная функция распределения 6

Центральные и абсолютные моменты 8

Характеристическая функция 10

Кумулянты(семиинварианты) 11

Область применения 12

Список использованной литературы 13

История появления

12 ноября 1842 г. в Лэнгфорд-Грове (графство Эссекс) родился лорд Джон Уильям Рэлей (John William Rayleigh), английский физик, нобелевский лауреат. Получил домашнее образование. Окончил Тринити-колледж Кембриджского университета, работал там же до 1871 г. В 1873 г. создал лабораторию в родовом имении Терлин-Плейс. В 1879 г. стал профессором экспериментальной физики Кембриджского университета, в 1884 г. – секретарем Лондонского королевского общества. В 1887-1905 гг. – профессор Королевской ассоциации, с 1905 г. – президент Лондонского королевского общества, с 1908 г. – президент Кембриджского университета.

Будучи всесторонне эрудированным естествоиспытателем, он отметился во многих отраслях науки: теория колебаний, оптика, акустика, теория теплового излучения, молекулярная физика, гидродинамика, электричество и другие области физики. Исследуя акустические колебания (колебания струн, стержней, пластинок и др.), он сформулировал ряд фундаментальных теорем линейной теории колебаний (1873), позволяющих делать качественные заключения о собственных частотах колебательных систем, и разработал количественный метод возмущений для нахождения собственных частот колебательной системы. Рэлей впервые указал на специфичность нелинейных систем, способных совершать незатухающие колебания без периодического воздействия извне, и на особый характер этих колебаний, которые впоследствии были названы автоколебаниями.

Он объяснил различие групповой и фазовой скоростей и получил формулу для групповой скорости (формула Рэлея).

Распределение же Рэлея появилось в 1880 году вследствие рассмотрения задачи сложения множества колебаний со случайными фазами, в которой он получил функцию распределения для результирующей амплитуды. Метод, разработанный при этом Рэлеем, надолго определил дальнейшее развитие теории случайных процессов.

Функция плотности вероятности

Вид функции распределения:

σ- параметр.

Таким образом, в зависимости от параметра σ меняется не только амплитуда, но и дисперсия распределения. С уменьшением σ амплитуда растет и график «сужается», а с увеличением σ увеличивается разброс и уменьшается амплитуда.

Интегральная функция распределения

Интегральная функция распределения, по определению равная интегралу от плотности вероятности равна:

График интегральной функции распределения при различных параметрах σ:

В зависимости от σ график функции распределения выглядит так:

Таким образом, при изменении параметра σ происходит изменение графика. При уменьшении σ график становится более крутым, а при увеличении σ более пологим:

Центральные и абсолютные моменты

Законы распределения полностью описывают случайную величину X с вероятностной точки зрения (содержат полную информацию о случайной величине). На практике часто нет необходимости в таком полном описании, достаточно указать значения отдельных параметров (числовых характеристик), определяющих те или иные свойства распределения вероятностей случайной величины.

Среди числовых характеристик математическое ожидание играет наиболее существенную роль и рассматривается как результат применения операции усреднения к случайной величине Х , обозначаемой как
.

Начальным моментом s – го порядка случайной величины X называется математическое ожидание s – й степени этой величины:

.

Для непрерывной случайной величины:

Математическое ожидание для величины, распределенной по закону Рэлея равно:

Значение математического ожидания для разных значений параметра σ:

Центрированной случайной величиной X называется её отклонение от математического ожидания
.

Центральным моментом s ого порядка случайной величины X называется математическое ожидание s – й степени центрированной величины
:

Для непрерывной случайной величины

.

Второй центральный момент. Дисперсия есть характеристика рассеяния случайной величины около ее математического ожидания

Для случайной величины, распределенной по закону Рэлея дисперсия(второй центральный момент), равна:

Характеристическая функция

Характеристической функцией случайной величины Х называется функция

Эта функция представляет собой математическое ожидание от некоторой комплексной случайной величины
, являющейся функцией от случайной величины Х. При решении многих задач удобнее пользоваться характеристической функцией, а не законом распределения.

Зная закон распределения можно найти характеристическую функцию по формуле:

Как видим, данная формула представляет собой не что иное, как обратное преобразование Фурье для функции плотности распределения. Очевидно, что с помощью прямого преобразования Фурье можно по характеристической функции найти закон распределения.

Характеристическая функция для случайной величины, распределенной по закону Рэлея:

,

где
- интеграл вероятности комплексного аргумента.

Кумулянты(семиинварианты)

Функция
называется кумулянтной функцией случайной величины Х. Кумулянтная функция является полной вероятностной характеристикой случайной величины, также, как и. Смысл введения кумулянтной фукнции заключается в том, что эта функция зачастую оказывается наиболее простой среди полных вероятностных характеристик.

При этом число называется кумулянтом порядка случайной величины Х.

Область применения

Распределение Рэлея применяется для описания большого числа задач, например:

    Задача сложения колебаний со случайными фазами;

    Распределение энергии излучения абсолютно черного тела;

    Для описания законов надежности;

    Для описания некоторых радиотехнических сигналов;

    Закону распределения Релея подчиняются амплитудные значения шумо­вых коле­баний (помех) в радиоприем­нике;

    Используется для описания случайной огибающей узкополосного случайного процесса(шума).

Список использованной литературы

    Р.Н. Вадзинский «Справочник по вероятностным распределениям», С.-П. «Наука», 2001 год.

    Г.А. Самусевич, учебное пособие «Теория вероятностей и математическая статистика», УГТУ-УПИ, 2007 год.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Чувашский государственный университет имени И.Н. Ульянова»

Факультет дизайна и компьютерных технологий

Кафедра компьютерных технологий

по дисциплине «Надежность, эргономика и качество АСОиУ»

на тему «Основные математические модели, используемые в теории надежности »

Выполнил:

студент гр. зДиКТ-25-08

Люсенков И.В.

Проверил:

Григорьев В.Г.

Чебоксары

Введение

    Основные математические модели, используемые в теории надежности……. 3

    Распределение Вейбулла…………………………………………………………. 3

    Экспоненциальное распределение………………………………………………. 4

    Распределение Рэлея……………………………………………………………… 5

    Нормальное распределение (распределение Гаусса)………………………….. 5

    Определение закона распределения ……………………………………………. 6

    Выбор числа показателей надежности …………………………………………. 7

    Точность и достоверность статистической оценки показателей надежности… 10

    Особенности программ на надежность………………………………………… 11

    Литература……………………………………………………………………… 13

Основные математические модели, используемые в теории надежности

В приведенных выше математических соотношениях зачастую использовалось понятие плотности вероятности и закон распределения.

Закон распределения - устанавливаемая определенным образом связь между возможными значениями случайной величины и соответствующими их вероятностями.

Плотность распределения (вероятностей) - широко распространенный способ описания закона распределения

Распределение Вейбулла

Распределение Вейбула является двухпараметрическим распределением. Согласно этому распределению плотность вероятности момента отказа

где δ - параметр формы (определяется подбором в результате обработки экспериментальных данных, δ > 0);

λ - параметр масштаба,

От значения коэффициента формы во многом зависит график функции плотности вероятности.

Интенсивность отказов определяется по выражению

(2)

Вероятность безотказной работы

(3)

Отметим, что при параметре δ = 1 распределение Вейбулла переходит в экспоненциальное, а при δ = 2 - в распределение Рэлея.

При δ <1 интенсивность отказов монотонно убывает (период приработки), а при δ >1 монотонно возрастает (период износа). Следовательно, путем подбора параметра δ можно получить, на каждом из трех участков, такую теоретическую кривую λ(t), которая достаточно близко совпадает с экспериментальной кривой, и тогда расчет требуемых показателей надежности можно производить на основе известной закономерности.

Экспоненциальное распределение

Как было отмечено экспоненциальное распределение вероятности безотказной работы является частным случаем распределения Вейбулла, когда параметр формы δ = 1. Это распределение однопараметрическое, то есть для записи расчетного выражения достаточно одного параметра λ = const . Для этого закона верно и обратное утверждение: если интенсивность отказов постоянна, то вероятность безотказной работы как функция времени подчиняется экспоненциальному закону:

(4)

Среднее время безотказной работы при экспоненциальном законе распределения интервала безотказной работы выражается формулой:

(5)

Таким образом, зная среднее время безотказной работы Т 1 (или постоянную интенсивность отказов λ), можно в случае экспоненциального распределения найти вероятность безотказной работы для интервала времени от момента включения объекта до любого заданного момента t.

Распределение Рэлея

Плотность вероятности в законе Рэлея имеет следующий вид

(6)

где δ * - параметр распределения Рэлея.

Интенсивность отказов равна:

. (7)

Характерным признаком распределения Рэлея является прямая линия графика λ(t), начинающаяся с начала координат.

Вероятность безотказной работы объекта в этом случае определится по выражению

(8)

Нормальное распределение (распределение Гаусса)

Нормальный закон распределения характеризуется плотностью вероятности вида

(9)

где m x , σ x - соответственно математическое ожидание и среднеквадратическое отклонение случайной величины Х.

При анализе надежности РЭСИ в виде случайной величины, кроме времени, часто выступают значения тока, электрического напряжения и других аргументов. Нормальный закон - это двухпараметрический закон, для записи которого нужно знать m x и s x .

Вероятность безотказной работы определяется по формуле

(10)

а интенсивность отказов - по формуле

(11)

В данном пособии показаны только наиболее распространенные законы распределения случайной величины. Известен целый ряд законов, так же используемых в расчетах надежности: гамма-распределение, χ 2 -распределение, распределение Максвелла, Эрланга и др.

Функция плотности вероятности

Функция распределения

, x ³ 0;

Точечная оценка параметра закона распределения

.

Закон распределения Эрланга (гамма-распределение)

Функция плотности вероятности

Функция распределения

, x ³ 0;

Точечная оценка параметров закона распределения:

и по k" принимается k как ближайшее целое (k=1, 2, 3,...); .

Закон распределения Вейбулла

Функция плотности вероятности

функция распределения

, x ³ 0;

Точечная оценка параметров закона распределения

;

В системах с приоритетами требований различают относительный приоритет (без прерывания обслуживания), когда при поступлении требования с более высоким приоритетом оно принимается на обслуживание после окончания ранее начавшегося обслуживания требования с меньшим приоритетом, и абсолютный приоритет, когда канал освобождается немедленно для обслуживания поступившего требования с более высоким приоритетом.

Шкала приоритета может быть построена исходя из каких-то внешних относительно системы обслуживания критериев или на показателях, связанных с работой самой системы обслуживания. Практическое значение имеют следующие типы приоритетов:

приоритет у требований с наименьшим временем обслуживания. Эффективность данного приоритета может быть показана на следующем примере. Поступили последовательно два требования с длительностью обслуживания соответственно 6,0 и 1,0 ч. При приеме их на обслуживание освободившимся каналом в порядке поступления простой составит для 1-го требования 6,0 ч и для второго 6,0+1,0 = 7,0 ч или суммарно для двух требований 13,0 ч. Если дать приоритет второму требованию и его принять на обслуживание первым, то его простой составит 1,0 ч и простой другого– 1,0+6,0 = 7,0 ч или суммарно для двух требований 8,0 ч. Выигрыш от назначенного приоритета составит 5,0ч (13-8) сокращения простоев требований в системе;

приоритет у требований с минимальным отношением времени обслуживания к мощности (производительности) источника требования, например, к грузоподъемности автомобиля.

Механизм обслуживания характеризуется параметрами отдельных каналов обслуживания, пропускной способностью системы в целом и другими данными об обслуживании требований. Пропускная способность системы определяется числом каналов (аппаратов) и производительностью каждого из них.

45.Определение доверительных интервалов случайных величин



Интервальная оценка параметра распределения случайной величины определяется тем, что с вероятностью g

abs(P – P м) ≤d,

где P – точное (истинное) значение параметра;

P м – оценка параметра по выборке;

d – точность (ошибка) оценивания параметра Р.

Наиболее часто принимают g от 0.8 до 0.99.

Доверительный интервал параметра – это интервал, в который попадает значение параметра с вероятностью g. Например, на этой основе находится требуемый размер выборки случайной величины, который обеспечивает оценку математического ожидания при точности d с вероятностью g. Вид связи определяется законом распределения случайной величины.

Вероятность попадания случайной величины в заданный интервал [Х 1 , Х 2 ] определяется приращением интегральной функции распределения на рассматриваемом интервале F(Х 2)–F(Х 1). Исходя из этого, при известной функции распределения можно найти ожидаемое гарантированное минимальное Х гн (x≥ Х гн) или максимальное значение Х гв (x≤ Х гв) случайной величины с заданной вероятностью g (рисунок 2.15). Первое из них является тем значением, больше которого случайная величина будет с вероятностью g, а второе – что случайная величина с вероятностью g меньше этого значения. Гарантированное минимальное значение Х гн с вероятностью g обеспечивается при F(x)= 1-g и максимальное Х гв при F(x)=g. Таким образом, значения Х гн и Х гв находятся по выражениям:

Х гн = F -1 (1-g);

Х гв = F -1 (g).

Пример. Случайная величина имеет экспоненциальное распределение с функцией .

Требуется найти значения Х гн и Х гв, для которых случайная величина х с вероятностью g=0.95 соответственно больше Х гн и меньше Х гв.



Исходя из того, что F -1 (α) = -1/l ln(1- α) (см.вывод ранее) и α = 1-g = 0.05 получаем

Х гн = -1/l ln(1- α) = -1/0.01 ln(1-0.05)=-100 (-.0513)=5.13.

Для Х гв α = g = 0.95 аналогично имеем

Х гв = -1/l ln(1- α) = -1/0.01 ln(1-0.95)=-100 (-2.996)=299.6.

Для нормального закона распределения значения Х гн и Х гв могут быть рассчитаны по формулам

Х гн = х м + s U 1- g = х м - s U g ;

Х гв = x м + s U g ,

где x м – математическое ожидание случайной величины; s – среднеквадратическое отклонение случайной величины; U g – односторонняя квантиль нормального закона распределения при вероятности g.

Рисунок 2.15 – Графическая интрепретация определения Х гн и Х гв

46.Описание потоков требований на обслуживание

Входящий поток представляет собой последовательность требований (заявок), прибывающих в систему обслуживания, и характеризуется частотой поступления требований в единицу времени (интенсивностью) и законом распределения интенсивности потока. Входящий поток может быть описан также интервалами времени между моментами поступления требований и законом распределения этих интервалов.

Требования в потоке могут поступать по одному (ординарные потоки) или группами (неординарные потоки).

Свойство ординарности потока заключается в том, что в любой момент времени может поступить только одно требование. Иными словами, свойство заключается в том, что вероятность поступления больше одного требования за малый промежуток времени есть бесконечно малая величина.

В случае группового поступления требований задается интенсивность поступления групп требований и закон ее распределения, а также размер групп и закон их распределения.

Интенсивность поступления требований может изменяться во времени (нестационарные потоки) или зависит только от единицы времени, принятой для определения интенсивности (стационарные потоки). Поток называется стационарным, если вероятность появления n требований за промежуток времени (t 0 , t 0 +Δt) не зависит от t 0 , а зависит только от Δt.

В нестационарном потоке интенсивность изменяется во времени по непериодической или периодической закономерности (например, процессы сезонного характера), а также может иметь периоды, соответствующие частичной или полной задержке потока.

В зависимости от того, имеется ли связь между числом требований, поступивших в систему до и после некоторого момента времени, поток бывает с последействием или с отсутствием последействия.

Ординарный, стационарный поток требований с отсутствием последействия является простейшим.

47.Критерии согласия Пирсона и Романовского

Большинство факторов, оказывающих влияние на производственный процесс, не остаются неизменными. Поэтому числовые данные, собранные в результате наблюдения, не могут быть одинаковыми, но обязательно подчиняются определенным закономерностям, называемым распределением.

Если измерять контролируемый параметр непрерывно, можно построить его график плотности распределения. Однако на практике проводят измерения только в определенные промежутки времени и не всех изделий, а только некоторых. Поэтому по результатам измерений строят обычно гистограмму - ступенчатую фигуру, контуры которой дают приблизительное представление о графике плотности, то есть о характере распределения изучаемого параметра.

Гистограмма – это столбиковая диаграмма, служащая для графического представления имеющейся количественной информации.

Обычно основой для построения гистограммы служит интервальная таблица частот, в которой весь диапазон измеренных значений случайной величины разбит на некоторое число интервалов, и для каждого интервала указано количество значений, попавших на данный интервал.

Последовательность построения гистограммы следующая.

1. Находят наибольшее (X max ) и наименьшее (X min ) значения случайной величины и вычисляют размах изменения R

R = X max X min .

2. Задают некоторое число разрядов k . При n < 100 можно принять k = 6.

3. Определяют ширину разряда h = . Для упрощения расчётов полученное значение h округляют в любую сторону.

4. Устанавливают границы разрядов и подсчитывают число измерений в каждом из них. При подсчёте значения Х , находящегося на границе разряда, его следует всегда относить к разряду, расположенному слева или справа.

5. Устанавливают m i – число значений Х , попавших в данный разряд.

6. Определяют частоту появления величины p i в данном разряде

p i = ,

где n общее число всех опытных данных.

7. В системе координат p i = f (X ) на ширине разряда h откладывают величину p i как высоту и строят прямоугольник.

Результат заносят в таблицу

Таблица. Гистограмма распределения

Интер валы

m i

p i =

Очевидно, что площадь элементарного прямоугольника

s i = hy i = p i ,

а площадь всей гистограммы

S = = = 1.

Таким образом, гистограмма представляет собой совокупность прямоугольников.

Рис. Гистограмма (1 ) и полигон (2 ) распределения величины Х

Анализ гистограммы сводится к её сравнению с типовыми случаями.

Обычный тип (симметричный или колоколообразный). Наивысшая частота оказывается в середине основания гистограммы (и постепенно снижается к обоим концам). Форма симметрична. Такая гистограмма по внешнему виду приближается к нормальной (гауссовской) кривой, и можно предполагать, что ни один из факторов, влияющих на исследуемый процесс, не преобладает над другими.

Эта форма гистограммы встречается чаще всего. В этом случае среднее значение случайной величины (применительно к технологической операции – это показатель уровня настроенности) близко к середине основания гистограммы, а степень ее рассеяния относительно среднего значения (для технологических операций – это показатель точности) характеризуется крутизной снижения столбцов.

Рис. Обычный тип гистограммы

Гребенка (мультимодальный тип). Классы через один имеют более низкие частоты.

Такая форма гистограммы встречается, кода число единичных наблюдении, попадающих в класс, колеблется от класса к классу или когда действует определенное правило округления данных Возможно требуется осуществить расслоение данных, то есть определить дополнительные признаки для группировки наблюдаемых значений.

Рис. Гребёнка

Положительно (отрицательно) скошенное распределение . Среднее значение гистограммы локализуется справа (слева) от середины основания гистограммы. Частоты довольно резко спадают

При движении влево (вправо) и, наоборот, медленно вправо (влево). Форма асимметрична.

Такая форма гистограммы встречается, когда нижняя (верхняя) граница регулируется либо теоретически, либо по значению допуска или когда левое (правое) значение недостижимо. В этом случае также можно предполагать, что на процесс оказывает преобладающее влияние какой-либо фактор, в частности, подобная форма встречается, когда имеет место замедленный (ускоренный) износ режущего инструмента.

Подобная гистограмма характерна также для распределения Рэлея, которое характеризует форму либо несимметричность изделия.

Рис. Положительно скошенное распределение

Распределение с обрывом слева (справа). Среднее арифметическое гистограммы локализуется далеко слева (справа) от середины основания. Частоты резко спадают при движении влево (вправо) и, наоборот, медленно вправо (влево). Форма асимметрична.

Рис. Распределение с обрывом слева

Это одна из тех форм, которые часто встречаются при 100 %-ном просеивании изделий из-за плохой воспроизводимости процесса, а также когда проявляется резко выраженная положительная (отрицательная) асимметрия.

Плато (равномерное и прямоугольное распределения). Частоты в разных классах образуют плато, поскольку все классы имеют более или менее одинаковые ожидаемые частоты.

Рис. Плато

Такая форма встречается в смеси нескольких распределений, имеющих различные средние, но может также указывать на какой-либо преобладающий фактор, например, равномерный износ режущего инструмента.

Двухпиковый тип (бимодальный тип). В окрестностях середины основания частота низкая, зато есть по пику с каждой стороны.

Такая форма встречается, когда смешиваются два распределения с далеко отстоящими средними значениями, то есть имеет смысл провести расслоение данных. Такую же форму гистограммы можно наблюдать и в случае, когда какой-либо преобладающий фактор меняет свои характеристики, например, если режущий инструмент имеет сначала ускоренный, а затем замедленный износ.

Рис. Двухпиковый тип

Распределение с изолированный пиком . Наряду с распределением обычного типа появляется маленький изолированный пик.

Рис. Распределение с изолированным пиком

Такая форма появляется при наличии малых включений данных из другого распределения или ошибки измерения. При получении подобной гистограммы следует прежде всего проверить достоверность данных, а в том случае, когда результаты измерений не вызывают сомнения, продумать обоснованность выбранного способа разбиения наблюдаемых значений на интервалы.

Кроме того, по гистограмме можно провести оценку процесса.

При использовании гистограмм для оценки качества процесса на шкале значений наблюдаемого параметра отмечают нижнюю и верхнюю границы поля допуска (поля спецификации) и через эти точки проводят две прямые параллельные столбцам гистограммы.

Если вся гистограмма оказывается внутри границ поля допуска, процесс статистически устойчив и не требует никакого вмешательства.

Если левая и правая границы гистограммы совпадают с границами поля допуска, то желательно уменьшить разброс процесса, так как любое воздействие может привести к появлению изделий, не удовлетворяющих допуску.

Если часть столбцов гистограммы оказывается за границами поля допуска, то необходимо провести регулировку процесса так, чтобы сместить среднее ближе к центру поля допускаили уменьшить вариации, чтобы добиться меньшего разброса.