Чем объяснить введение поясного времени. Время. Время и календарь

Повторительно –обобщающий урок по астрономии в 10 классе

по теме «ПРАКТИЧЕСКИЕ ОСНОВЫ АСТРОНОМИИ»

Составила учитель физики

ГБОУ «школа №763» г. Москвы

Князева Елена Николаевна

Цели урока:

    Повторить и обобщить знания учащихся материала по теме «Практические основы астрономии».

    Закрепить у учащихся навыки решения задач: расчетных, качественных, экспериментальных.

    Подготовить учащихся к контрольной работе по данному разделу.

    Закрепить практические навыки работы со звездной картой, моделью небесной сферы.

    Развитие интереса к изучению физики и астрономии.

    Развитие логического мышления.

1.Тип урока: Обобщение, систематизация и повторение материала.

2.Структура мер o приятия.

Продолжи

тельность,

мин.

Организационный момент.

Вступительное слово учителя.

o да устных и письменных заданий обобщающего, систематизирующего характера, вырабатывающих обобщённые умения, формирующих обобщённо понятийные знания на основе обобщения фактов, явлений.

Контрольная работа

Подведение итогов

3.Общие методы:

устного контроля и самоконтроля, письменного контроля, самостоятельной познавательной деятельности учащихся, частично-поисковые, наглядные, стимулирования и мотивации к учению.

    Оборудование:

Подвижная карта звездного неба, модель небесной сферы, калькулятор, компьютер, проектор.

Ход урока

    Организационный момент.

Подготовить учащихся к работе на уроке.

    Вступительное слово учителя.

Учитель сообщает цели и задачи урока, а также зачем проводиться

данный урок, где можно применять знания и умения, полученные

на уроке.

    Выполнение учащимися индивидуально и коллективно различного р o да устных и письменных заданий обобщающего, систематизирующего характера, вырабатывающих обобщённые умения, формирующих обобщённо понятийные знания на основе обобщения фактов и явлений.

Вопросы для фронтального опроса.

1.Что называется созвездием?

2. Перечислите известные вам созвездия.

3.Звездная величина Веги равна 0,03, а звездная величина Денеба составляет 1,25. Какая из этих звезд ярче?

4. Во сколько раз звезда первой величины ярче звезды второй величины?

5.Какие вам известны горизонтальные координаты светила?

6. Что такое азимут? Как его определить? Какие единицы измерения имеет азимут?

7. Что такое высота? Как ее определить? Какие единицы измерения имеет высота?

8. Какие координаты светила называются экваториальными?

9.По координатам, приведенным в списке ярких звезд (приложение 5 в учебнике), найдите некоторые из них на звездной карте.

10.Найдите на модели небесной сферы ее основные круги, линии и точки.

11. Какой круг небесной сферы звезды пересекают дважды?

12. Как можно определить высоту светила в верхней и нижней кульминации?

13. Что такое эклиптика?

14. Какие вам известны зодиакальные созвездия?

15.Почему полуденная высота Солнца в течение года меняется?

16. Определите положение Солнца на эклиптике и его экваториальные координаты на сегодняшний день.

17. Что такое сидерический и синодический месяц? Чему равны эти месяцы для Луны?

18. Почему с Земли видна лишь одна сторона Луны?

19. Почему затмения Луны и Солнца не происходят каждый месяц?

20. Чем объясняется введение поясной системы счета времени?

    Контрольная работа по теме

«ПРАКТИЧЕСКИЕ ОСНОВЫ АСТРОНОМИИ».

1 вариант.

    Рассчитайте, во сколько раз звезда второй звёздной величины ярче звезды шестой величины.

    а) Выразите в часовой мере 120°.

б) Выразите в угловой мере прямое восхождение, равное 5ч 30 мин.

    а) Как располагается ось мира относительно земной оси?

б) В каких точках небесный экватор пересекается с линией горизонта?

    Географическая широта Санкт-Петербурга 60°. На какой высоте в этом городе происходит верхняя кульминация звезды, склонение которой равно -16°?

    Высота звезды в верхней кульминации составляла 15°, склонение этой звезды равно -9°. Какова географическая широта места наблюдения?

    Козерог, Дракон, Рыбы, Лев, Весы, Рак, Скорпион.

    а) Чему равен период обращения Луны вокруг Земли в системе отсчёта, связанной со звёздами?

б) Сколько в среднем в году можно наблюдать солнечных затмений?

    Всемирное время 10ч 45 мин. Какое время будут показывать часы в Москве?

    Какой дате по старому стилю соответствует 1 января 2018 года по новому стилю?

2 вариант.

    Рассчитайте, во сколько раз звезда первой звёздной величины ярче звезды пятой величины.

    а) Выразите в часовой мере 150 °.

б) Выразите в угловой мере прямое восхождение, равное 18ч 30мин.

    а) Как располагается полуденная линия относительно отвесной линии?

б) В каких точках небесный меридиан пересекается с линией горизонта?

    Географическая широта Москвы 56°. На какой высоте в этом городе происходит верхняя кульминация звезды, склонение которой равно -20°?

    Определите склонение звезды, верхняя кульминация которой наблюдалась в Москве (географическая широта 56°) на высоте 37°.

    Овен, Лебедь, Дева, Телец, Близнецы, Водолей, Стрелец.

Найдите лишнее в этом списке. Обоснуйте свой ответ.

    а) Чему равен полный цикл смены лунных фаз?

б) Сколько в среднем в году можно наблюдать лунных затмений?

    Московское время 10ч 45 мин. Чему равно всемирное время?

    Какой дате по новому стилю соответствует 1 января 2018 года по старому стилю?

Ответы

а)8ч

б)82°30‘

а) параллельно

б)в точках востока и запада

14°

66°

23,5°

Дракон не является зодиакальным созвездием

а)27,3 суток

б)2-3

13ч45

мин

а)10ч

б)277°30‘

а) перпендикулярно

б)в точках севера и юга

14°

23,5°

Лебедь не является зодиакальным созвездием

а)29,5 суток

б)1-2

7ч45

мин

Поясно"е вре"мя , система счёта времени, основанная на разделении поверхности Земли на 24 часовых пояса: во всех пунктах в пределах одного пояса в каждый момент П. в. одинаково, в соседних поясах оно отличается ровно на один час. В системе поясного времени 24 меридиана, отстоящих по долготе на 15° друг от друга, приняты за средние меридианы часовых поясов. Границы поясов на морях и океанах, а также в малонаселённых местах проводят по меридианам, отстоящим на 7,5° к В. и З. от среднего. В остальных районах Земли границы для большего удобства проведены по близким к этим меридианам государственным и административным границам, железным дорогам, рекам, горным хребтам и т.п. (см. карту часовых поясов ). По международному соглашению за начальный был принят меридиан с долготой 0° (Гринвичский). Соответствующий часовой пояс считается нулевым; время этого пояса называется всемирным. Остальным поясам в направлении от нулевого на восток присвоены номера от 1 до 23. Разность между П. в. в каком-либо часовом поясе и всемирным временем равна номеру пояса.

Время некоторых часовых поясов получило особые названия. Так, например, время нулевого пояса называют западноевропейским, время 1-го пояса - среднеевропейским, время 2-го пояса в зарубежных странах называют восточноевропейским временем. По территории СССР проходят часовые пояса от 2-го до 12-го включительно. Для наиболее рационального использования естественного света и экономии электроэнергии во многих странах в летнее время часы переводят на один час или более вперёд (т. н. летнее время). В СССР декретное время введено в 1930; стрелки часов были передвинуты на час вперёд. В результате все пункты в пределах данного пояса стали пользоваться временем соседнего пояса, расположенного к В. от него. Декретное время 2-го часового пояса, в котором расположена Москва, называется московским временем.

В ряде государств, несмотря на удобство поясного времени, не пользуются временем соответствующего часового пояса, а употребляют на всей территории или местное время столицы, или время, близкое к столичному. В астрономическом ежегоднике «Nautical almanac» («Морской альманах») (Великобритания) за 1941 и последующие годы приведены описания границ часовых поясов и принятого счёта времени для тех мест, где П. в. не употребляется, а также все происшедшие впоследствии изменения.

До введения П. в. в большинстве стран было распространено гражданское время, различное во всяких двух пунктах, долготы которых неодинаковы. Связанные с такой системой счёта неудобства стали особенно остро ощущаться с развитием ж.-д. сообщений и средств телеграфной связи. В 19 в. в ряде стран стали вводить единое для данной страны время, чаще всего гражданское время столицы. Однако эта мера была непригодна для государств с большой протяжённостью территории по долготе, т.к. принятый счёт времени на далёких окраинах значительно отличался бы от гражданского. В некоторых странах единое время вводилось только для употребления на железных дорогах и телеграфе. В России для этой цели служило гражданское время Пулковской обсерватории, называвшееся петербургским временем. П. в. было предложено канадским инженером С. Флемингом в 1878. Впервые оно было введено в США в 1883. В 1884 на конференции 26 государств в Вашингтоне было принято международное соглашение о П. в., однако переход на эту систему счёта времени затянулся на многие годы. На территории СССР П. в. введено после Великой Октябрьской социалистической революции, с 1 июля 1919.

Лит.: Куликов К. А., Курс сферической астрономии, 2 изд., М., 1969.

1. Местное время. Время, измеренное на данном географическом меридиане, называется местным временем этого меридиана.Для всех мест на одном и том же меридиане часовой угол точки весеннего равноденствия (или Солнца, или среднего солнца) в какой-либо момент один и тот же. Поэтому на всем географическом меридиане местное время (звездное или солнечное) в один и тот же момент одинаково.

2. Всемирное время. Местное среднее солнечное время гринвичского меридиана называется всемирным временем.

Местное среднее время любого пункта на Земле всегда равно всемирному времени в этот момент плюс долгота данного пункта, выраженная в часовой мере и считаемая положительной к востоку от Гринвича.

3. Поясное время. В 1884 г. была предложена поясная система счета среднего времени: счет времени ведется только на 24 основных географических меридианах, расположенных друг от друга по долготе точно через 15°, приблизительно посередине каждого часового пояса. Часовые пояса занумерованы от 0 до 23. За основной меридиан нулевого пояса принят гринвичский.

4. Декретное время. В целях более рационального распределения электроэнергии, идущей на освещение предприятий и жилых помещений, и наиболее полного использования дневного света в летние месяцы года во многих странах переводят часовые стрелки часов, идущих по поясному времени, на 1h вперед.

5.Вследствие неравномерного вращения Земли средние сутки, оказываются величиной непостоянной. Поэтому в астрономии пользуются двумя системами счета времени: неравномерным временем, которое получается из наблюдений и определяется действительным вращением Земли, и равномерным временем, которое является аргументом при вычислении эфемерид планет и определяется по движению Луны и планет. Равномерное время называется ньютоновским или эфемеридным временем.

9.Календарь. Типы календарей. История современного календаря. Юлианские дни.

Система счета длительных промежутков времени называется календарем. Все календари можно разделить на три главных типа: солнечные, лунные и лунно-солнечные. В основе солнечных календарей лежит продолжительность тропического года, в основе лунных - продолжительность лунного, месяца, лунно-солнечные календари основаны на обоих этих периодах. Современный календарь, принятый в большинстве стран, является солнечным календарем. Основной единицей меры времени солнечных календарей является тропический год. Продолжительность тропического года в средних солнечных сутках равна 365d5h48m46s.

В юлианском календаре продолжительность календарного года считается равной 365 средним солнечным суткам три года подряд, а каждый четвертый год содержит 366 суток. Годы продолжительностью в 365 суток называются простыми, а в 366 суток - високосными. В високосном году в феврале 29 дней, в простом - 28.

Григорианский календарь возник в результате реформы юлианского календаря. Дело в том, что расхождение юлианского календаря со счетом тропическими годами оказалось неудобным для церковного летосчисления. По правилам христианской церкви праздник пасхи должен был наступать в первое воскресенье после весеннего полнолуния, т.е. первого полнолуния после дня весеннего равноденствия.

Григорианский календарь был введен в большинстве западных стран в течение XVI-XVII вв. В России перешли на новый стиль только в 1918 г.

Вычитанием более ранней даты одного события из более поздней даты другого, данных в одной системе летосчисления, можно вычислить число суток, прошедших между этими событиями. При этом необходимо учитывать число високосных годов. Эта задача удобнее решается с помощью юлианского периода, или юлианских дней. Началом каждого юлианского дня считается средний гринвичский полдень. Начало счета юлианских дней - условное и предложено в XVI в. н.э. Скалигером, как начало большого периода в 7980 лет, являющегося произведением трех меньших периодов: периода в 28 лет,19,15 Период в 7980 лет Скалигер назвал «юлианским» в честь своего отца Юлия.

Содержание статьи

ВРЕМЯ, понятие, позволяющее установить, когда произошло то или иное событие по отношению к другим событиям, т.е. определить, на сколько секунд, минут, часов, дней, месяцев, лет или столетий одно из них случилось раньше или позже другого. Измерение времени подразумевает введение временнóй шкалы, пользуясь которой можно было бы соотносить эти события. Точное определение времени базируется на дефинициях, принятых в астрономии и отличающихся высокой точностью.

Сейчас используются три основные системы измерения времени. В основе каждой из них конкретный периодический процесс: вращение Земли вокруг своей оси – всемирное время UT; обращение Земли вокруг Солнца – эфемеридное время ЕТ; и излучение (или поглощение) электромагнитных волн атомами или молекулами некоторых веществ при определенных условиях – атомное время АТ, определяемое с помощью высокоточных атомных часов. Всемирное время, обычно обозначаемое как «гринвичское среднее время», представляет собой среднее солнечное время на нулевом меридиане (с долготой 0° ), который проходит через город Гринвич, входящий в конурбацию Большого Лондона. На основе всемирного времени определяется поясное время, используемое для счета гражданского времени. Эфемеридное время – временнáя шкала, используемая в небесной механике при исследовании движения небесных тел, где требуется высокая точность расчетов. Атомное время – физическая временнáя шкала, применяемая в тех случаях, когда требуется чрезвычайно точное измерение «временн х интервалов» для явлений, связанных с физическими процессами.

Поясное время.

В повседневной практике на местах используется поясное время, которое отличается от всемирного на целое число часов. Всемирное время используется для счета времени при решении гражданских и военных задач, в астронавигации, для точного определения долготы в геодезии, а также при определении положения искусственных спутников Земли относительно звезд. Поскольку скорость вращения Земли вокруг своей оси не является абсолютно постоянной величиной, всемирное время не является строго равномерным по сравнению с эфемеридным или атомным временем.

Системы счета времени.

Единицей используемого в повседневной практике «среднего солнечного времени» являются «средние солнечные сутки», которые, в свою очередь, делятся следующим образом: 1 средние солнечные сутки = 24 средним солнечным часам, 1 средний солнечный час = 60 средним солнечным минутам, 1 средняя солнечная минута = 60 средним солнечным секундам. Одни средние солнечные сутки содержат 86 400 средних солнечных секунд.

Принято, что сутки начинаются в полночь и продолжаются 24 часа. В США для гражданских нужд принято сутки делить на две равные части – до полудня и после полудня, и соответственно в этих рамках вести 12-часовой счет времени.

Поправки к всемирному времени.

Сигналы точного времени по радио передаются в системе координированного времени (UTC), аналогичного среднему гринвичскому времени. Однако в системе UTC ход времени не вполне равномерен, там возникают отклонения с периодом ок. 1 года. В соответствии с международным соглашением в передаваемые сигналы вводится поправка, учитывающая эти отклонения.

На станциях службы времени определяется местное звездное время, по которому вычисляется местное среднее солнечное время. Последнее преобразуется в единое всемирное время (UT0) путем прибавления соответствующего значения, принятого для долготы, на которой расположена станция (к западу от Гринвичского меридиана). Таким образом устанавливается координированное всемирное время.

С 1892 известно, что ось земного эллипсоида испытывает колебания по отношению к оси вращения Земли с периодом примерно 14 мес. Расстояние между этими осями, измеренное на любом полюсе, составляет ок. 9 м. Следовательно, долгота и широта любой точки на Земле испытывают периодические вариации. Для получения более однородной шкалы времени в вычисленную для конкретной станции величину UT0 вводится поправка за изменение долготы, которая может достигать 30 мс (в зависимости от положения станции); таким образом получается время UT1.

Скорость вращения Земли подвержена сезонным изменениям, вследствие которых время, измеряемое вращением планеты, оказывается то «впереди», то «позади» звездного (эфемеридного) времени, причем отклонения в течение года могут достигать 30 мс. UT1, в которое внесена поправка, учитывающая сезонные изменения, обозначается UT2 (предварительное равномерное, или квазиравномерное, всемирное время). Время UT2 определяется на основе средней скорости вращения Земли, но на нем сказываются долгопериодные изменения этой скорости. Поправки, позволяющие рассчитать время UT1 и UT2 по UТ0, вводятся в унифицированной форме Международным бюро времени, находящимся в Париже.

АСТРОНОМИЧЕСКОЕ ВРЕМЯ

Звездное время и солнечное время.

Для определения среднего солнечного времени астрономы используют наблюдения не самого солнечного диска, а звезд. По звездам же определяется т.н. звездное, или сидерическое (от лат. siderius – звезда или созвездие), время. С помощью математических формул по звездному времени рассчитывается среднее солнечное время.

Если воображаемую линию земной оси продлить в обе стороны, она пересечется с небесной сферой в точках т.н. полюсов мира – Северного и Южного (рис. 1). На угловом расстоянии 90° от этих точек проходит большой круг, называемый небесным экватором, который является продолжением плоскости земного экватора. Видимый путь движения Солнца называется эклиптикой. Плоскости экватора и эклиптики пересекаются под углом ок. 23,5° ; точки пересечения носят название точек равноденствия. Ежегодно, примерно 20–21 марта, Солнце пересекает экватор при движении с юга на север в точке весеннего равноденствия. Эта точка почти неподвижна по отношению к звездам и используется в качестве репера для определения положения звезд в системе астрономических координат, а также звездного времени. Последнее измеряется величиной часового угла, т.е. угла между меридианом, на котором находится объект, и точкой равноденствия (отсчет производится на запад от меридиана). В пересчете на время один час соответствует 15 дуговым градусам. По отношению к наблюдателю, находящемуся на определенном меридиане, точка весеннего равноденствия ежедневно описывает на небосводе замкнутую траекторию. Промежуток времени между двумя последовательными пересечениями этого меридиана называется звездными сутками.

С точки зрения наблюдателя, находящегося на Земле, Солнце каждый день перемещается по небесной сфере с востока на запад. Угол между направлением на Солнце и небесным меридианом данной местности (измеряемый в западном направлении от меридиана) определяет «местное видимое солнечное время». Именно такое время показывают солнечные часы. Промежуток времени между двумя последовательными пересечениями Солнцем меридиана называется истинными солнечными сутками. За год (примерно 365 дней) Солнце «совершает» полный оборот по эклиптике (360° ), а значит за сутки смещается по отношению к звездам и точке весеннего равноденствия почти на 1° . Вследствие этого истинные солнечные сутки длиннее звездных на 3 мин 56 с среднего солнечного времени. Поскольку видимое движение Солнца по отношению к звездам неравномерно, истинные солнечные сутки также имеют неодинаковую продолжительность. Эта неравномерность движения светила происходит вследствие эксцентриситета земной орбиты и наклона экватора к плоскости эклиптики (рис. 2).

Среднее солнечное время.

Появление в 17 в. механических часов привело к необходимости введения среднего солнечного времени. «Среднее (или среднее эклиптическое) солнце» – это фиктивная точка, равномерно движущаяся по небесному экватору со скоростью, равной средней за год скорости движения истинного Солнца по эклиптике. Среднее солнечное время (т.е. время, протекшее от нижней кульминации среднего солнца) в любой момент на данном меридиане численно равно часовому углу среднего солнца (выраженному в часовой мере) минус 12 ч. Разность между истинным и средним солнечным временем, которая может достигать 16 мин, называется уравнением времени (хотя фактически уравнением не является).

Как отмечалось выше, среднее солнечное время устанавливается с помощью наблюдений за звездами, а не за Солнцем. Среднее солнечное время строго определяется угловым положением Земли относительно ее оси, вне зависимости от того, постоянна или переменна скорость ее вращения. Но именно потому, что среднее солнечное время является мерой вращения Земли, оно используется для определения долготы местности, а также во всех других случаях, когда требуются точные данные о положении Земли в пространстве.

Эфемеридное время.

Движение небесных тел описывается математически уравнениями небесной механики. Решение этих уравнений позволяет установить координаты тела в виде функции времени. Время, входящее в эти уравнения, по определению, принятому в небесной механике, является равномерным, или эфемеридным. Существуют специальные таблицы эфемеридных (теоретически вычисленных) координат, которые дают расчетное положение небесного тела через определенные (обычно одинаковые) промежутки времени. Эфемеридное время может быть установлено по движению любой планеты или ее спутников в Солнечной системе. Астрономы определяют его по движению Земли по орбите вокруг Солнца. Оно может быть найдено путем наблюдений за положением Солнца по отношению к звездам, но обычно для этого следят за движением Луны вокруг Земли. Видимый путь, который Луна проходит в течение месяца среди звезд, может рассматриваться как своеобразные часы, в которых звезды образуют циферблат, а Луна служит часовой стрелкой. При этом эфемеридные координаты Луны должны быть вычислены с высокой степенью точности, и столь же точно должно быть определено ее наблюдаемое положение.

Положение Луны обычно определялось по времени прохождения через меридиан и покрытию звезд лунным диском. Наиболее современный метод представляет собой фотографирование Луны среди звезд с помощью специальной фотокамеры. В этой камере используется плоскопараллельный светофильтр из темного стекла, которому во время 20-секундной экспозиции придается наклон; вследствие этого изображение Луны смещается, и это искусственное смещение как бы компенсирует действительное движение Луны по отношению к звездам. Таким образом, Луна сохраняет строго фиксированное положение относительно звезд, и все элементы на снимке получаются отчетливыми. Поскольку положение звезд известно, измерения по снимку позволяют точно определить координаты Луны. Эти данные сводятся в виде эфемеридных таблиц Луны и позволяют рассчитать эфемеридное время.

Определение времени с помощью наблюдений за вращением Земли.

В результате вращения Земли вокруг оси происходит кажущееся движение звезд с востока на запад. В современных методах определения точного времени используются астрономические наблюдения, заключающиеся в регистрации моментов прохождения звезд через небесный меридиан, положение которого строго определено по отношению к астрономической станции. Для этих целей обычно использовался т.н. «малый пассажный инструмент» – телескоп, смонтированный таким образом, что его горизонтальная ось ориентирована по широте (с востока на запад). Труба телескопа может быть направлена в любую точку небесного меридиана. Для наблюдения прохождения звезды через меридиан в фокальной плоскости телескопа помещается крестообразная тонкая нить. Время прохождения звезды фиксируется с помощью хронографа (устройства, регистрирующего одновременно сигналы точного времени и импульсы, возникающие внутри самого телескопа). Таким образом определяется точное время прохождения каждой звезды через данный меридиан.

Значительно бóльшую точность измерения времени вращения Земли дает использование фотографической зенитной трубы (ФЗТ). ФЗТ представляет собой телескоп с фокусным расстоянием 4,6 м и входным отверстием диаметром 20 см, обращенным прямо в зенит. Небольшая фотографическая пластинка размещается под линзой на расстоянии ок. 1,3 см. Еще ниже, на расстоянии, равном половине фокусного, расположена ванна с ртутью (ртутный горизонт); ртуть отражает свет звезд, фокусирующийся на фотопластинке. И линза, и фотопластинка могут поворачиваться как единый блок на 180° вокруг вертикальной оси. При фотографировании звезды делается четыре 20-секундных экспозиции при различных положениях линзы. Пластинка перемещается с помощью механического привода таким образом, чтобы компенсировать видимое суточное движение звезды, удерживая ее в поле зрения. При движении каретки с фотокассетой автоматически регистрируются моменты прохождения ее через определенную точку (например, путем замыкания контакта часов). Отснятая фотопластинка проявляется, и полученное на ней изображение измеряется. Данные измерений сопоставляются с показаниями хронографа, что дает возможность установить точное время прохождения звезды через небесный меридиан.

В другом инструменте для определения звездного времени – призменной астролябии (не следует путать этот прибор со средневековым угломерным инструментом того же названия), 60-градусная (равносторонняя) призма и ртутный горизонт помещаются перед линзой телескопа. В призменной астролябии получаются два изображения наблюдаемой звезды, которые совпадают в момент, когда звезда находится на высоте 60° над горизонтом. При этом автоматически регистрируется показание часов.

Во всех этих инструментах используется один и тот же принцип – для звезды, координаты которой известны, определяется время (звездное или среднее) прохождения через определенную линию, например небесный меридиан. При наблюдениях специальными часами фиксируется время прохождения. Разность между вычисленным временем и показаниями часов дает поправку. Величина поправки показывает, сколько минут или секунд нужно прибавить к показаниям часов, чтобы получить точное время. Например, если расчетное время 3 ч 15 мин 26,785 с, а на часах 3 ч 15 мин 26,773 с, то часы отстают на 0,012 с и поправка составляет 0,012 с.

Обычно за ночь проводится наблюдение за 10–20 звездами, и по ним вычисляется средняя поправка. Последовательная серия поправок позволяет определить точность хода часов. При помощи таких инструментов, как ФЗТ и астролябия, за одну ночь устанавливается время с точностью ок. 0,006 с.

Все эти инструменты предназначены для определения звездного времени, по которому устанавливается среднее солнечное время, а последнее переводится в поясное время.

ЧАСЫ

Чтобы следить за течением времени, необходим простой способ его определения. В древности для этого использовались водяные или песочные часы. Точное определение времени стало возможным после того, как Галилей в 1581 установил, что период колебаний маятника почти не зависит от их амплитуды. Однако практическое использование этого принципа в маятниковых часах началось лишь спустя сто лет. Самые совершенные маятниковые часы сейчас имеют точность хода ок. 0,001–0,002 с в сутки. Начиная с 1950-х годов, маятниковые часы перестали использоваться для точных измерений времени и уступили место кварцевым и атомным часам.

Кварцевые часы.

Кварц обладает т.н. «пьезоэлектрическими» свойствами: при деформации кристалла возникает электрический заряд, и наоборот под действием электрического поля происходит деформация кристалла. Контроль, осуществляемый с помощью кристалла кварца, позволяет получить почти постоянную частоту электромагнитных колебаний в электрическом контуре. Пьезокварцевый генератор обычно создает колебания с частотой 100 000 Гц и выше. Специальное электронное устройство, известное под названием «делитель частоты», позволяет снизить частоту до 1000 Гц. Сигнал, полученный на выходе, усиливается и приводит в действие синхронный электромотор часов. Фактически, работа электромотора синхронизирована с колебаниями пьезокристалла. С помощью системы зубчатых передач мотор может быть соединен со стрелками, показывающими часы, минуты и секунды. По существу, кварцевые часы представляют собой сочетание пьезокварцевого генератора, делителя частоты и синхронного электромотора. Точность хода лучших кварцевых часов достигает нескольких миллионных долей секунды в сутки.

Атомные часы.

Для отсчета времени могут быть использованы также процессы поглощения (или излучения) электромагнитных волн атомами или молекулами некоторых веществ. Для этого применяется сочетание атомного генератора колебаний, делителя частоты и синхронного мотора. Согласно квантовой теории, атом может находиться в различных состояниях, каждое из которых соответствует определенному энергетическому уровню Е , представляющему дискретную величину. При переходе с более высокого энергетического уровня на более низкий возникает электромагнитное излучение, и наоборот, при переходе на более высокий уровень излучение поглощается. Частота излучения, т.е. число колебаний в секунду, определяется формулой:

f = (E 2 – E 1)/h ,

где E 2 – начальная энергия, E 1 – конечная энергия и h – постоянная Планка.

Многие квантовые переходы дают очень высокую частоту, примерно 5ґ 10 14 Гц, и возникающее излучение находится в диапазоне видимого света. Для создания атомного (квантового) генератора необходимо было найти такой атомный (или молекулярный) переход, частота которого могла бы быть воспроизведена с помощью электронной техники. Микроволновые устройства, подобные используемым в радиолокаторе, способны генерировать частоты порядка 10 10 (10 млрд.) Гц.

Первые точные атомные часы, в которых использовался цезий, были разработаны Л.Эссеном и Дж.В.Л.Парри в Национальной физической лаборатории в Теддингтоне (Великобритания) в июне 1955. Атом цезия может существовать в двух состояниях, причем в каждом из них он притягивается или одним, или другим полюсом магнита. Атомы, выходящие из нагревательной установки, проходят по трубке, расположенной между полюсами магнита «А». Атомы, находящиеся в состоянии, условно обозначаемом 1, отклоняются магнитом и ударяются о стенки трубки, тогда как атомы, находящиеся в состоянии 2, отклоняются в другую сторону таким образом, что проходят вдоль трубки через электромагнитное поле, частота колебаний которого соответствует радиочастоте, и затем направляются ко второму магниту «В». Если радиочастота подобрана правильно, то атомы, переходя в состояние 1, отклоняются магнитом «В» и улавливаются детектором. В противном случае атомы сохраняют состояние 2 и отклоняются в сторону от детектора. Частота электромагнитного поля изменяется до тех пор, пока счетчик, присоединенный к детектору, не покажет, что генерируется нужная частота. Резонансная частота, генерируемая атомом цезия (133 Cs), составляет 9 192 631 770 ± 20 колебаний в секунду (эфемеридного времени). Эта величина называется цезиевым эталоном.

Преимущество атомного генератора перед кварцевым пьезоэлектрическим заключается в том, что его частота не меняется со временем. Однако он не может непрерывно функционировать столь же долго, как кварцевые часы. Поэтому принято комбинировать в одних часах пьезоэлектрический кварцевый генератор с атомным; частота кварцевого генератора время от времени проверяется по атомному генератору.

Для создания генератора используется также изменение состояния молекул аммиака NH 3 . В устройстве, называемом «мазер» (микроволновом квантовом генераторе), внутри полого резонатора генерируются колебания в радиодиапазоне с почти постоянной частотой. Молекулы аммиака могут находиться в одном из двух энергетических состояний, различно реагирующих на электрический заряд определенного знака. Пучок молекул проходит в поле электрически заряженной пластины; при этом те из них, которые находятся на более высоком энергетическом уровне, под воздействием поля направляются в небольшое входное отверстие, ведущее в полый резонатор, а молекулы, находящиеся на более низком уровне, отклоняются в сторону. Часть молекул, попавших в резонатор, переходит на более низкий энергетический уровень, испуская при этом излучение, на частоту которого оказывает воздействие конструкция резонатора. По результатам экспериментов в Невшательской обсерватории в Швейцарии, полученная частота составила 22 789 421 730 Гц (в качестве эталона при этом использовалась резонансная частота цезия). Проводившееся в международных масштабах с помощью радио сопоставление частот колебаний, измеренных для пучка атомов цезия показало, что величина расхождений частот, получаемых в установках различной конструкции, составляет примерно две миллиардных. Квантовый генератор, в котором используется цезий или рубидий, известен под названием газонаполненного фотоэлемента. В качестве квантового генератора частот (мазера) применяется также водород. Изобретение (квантовых) атомных часов в значительной степени способствовало исследованиям изменений скорости вращения Земли и разработке общей теории относительности.

Секунда.

Использование атомной секунды в качестве эталонной единицы времени было принято 12-й Международной конференцией по мерам и весам в Париже в 1964. Она определяется на основе цезиевого эталона. С помощью электронных устройств осуществляется подсчет колебаний цезиевого генератора, и время, за которое происходит 9 192 631 770 колебаний, принимается за эталон секунды.

Гравитационное (или эфемеридное) время и атомное время. Эфемеридное время устанавливается по данным астрономических наблюдений и подчиняется законам гравитационного взаимодействия небесных тел. Определение времени с помощью квантовых стандартов частоты основано на электрических и ядерных взаимодействиях внутри атома. Вполне возможно несовпадение масштабов атомного и гравитационного времени. В таком случае частота колебаний, генерируемых атомом цезия, будет изменяться по отношению к секунде эфемеридного времени в течение года, и это изменение нельзя отнести за счет ошибки наблюдения.

Радиоактивный распад.

Хорошо известно, что атомы некоторых, т.н. радиоактивных, элементов самопроизвольно распадаются. В качестве показателя скорости распада используется «период полураспада» – промежуток времени, за который число радиоактивных атомов данного вещества уменьшается вдвое. Радиоактивный распад также может служить мерой времени – для этого достаточно подсчитать, какая часть от общего числа атомов подверглась распаду. По содержанию радиоактивных изотопов урана оценивается возраст горных пород в пределах нескольких миллиардов лет. Большое значение имеет радиоактивный изотоп углерода 14 С, образующийся под воздействием космического излучения. По содержанию этого изотопа, имеющего период полураспада 5568 лет, можно датировать образцы возрастом несколько более 10 тыс. лет. В частности, его используют для определения возраста объектов, связанных с деятельностью человека, как в историческое, так и в доисторическое время.

Вращение Земли.

Как предполагали астрономы, период вращения Земли вокруг своей оси изменяется во времени. Поэтому оказалось, что течение времени, отсчет которого ведется на основе вращения Земли, иногда бывает ускоренным, а иногда – замедленным по сравнению с тем, которое определяется по орбитальному движению Земли, Луны и других планет. За последние 200 лет ошибка в отсчете времени на основе суточного вращения Земли по сравнению с «идеальными часами» достигала 30 с.

За сутки отклонение составляет несколько тысячных долей секунды, однако за год накапливается ошибка в 1–2 с. Различают три типа изменения скорости вращения Земли: вековые, являющиеся следствием приливов под воздействием лунного притяжения и приводящие к увеличению продолжительности суток примерно на 0,001 с в столетие; малые скачкообразные изменения продолжительности суток, причины которых точно не установлены, удлиняющие или укорачивающие сутки на несколько тысячных долей секунды, причем такая аномальная продолжительность может сохраняться на протяжении 5–10 лет; наконец, отмечаются периодические изменения, главным образом с периодом в один год.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Информационная справка Календарь – система счисления длительных промежутков времени, основанная на периодичности таких явлений природы как смена дня и ночи (сутки), смена фаз Луны(месяц), смена времен года (год). Составлять календари, следить за летоисчислением всегда было обязанностью служителей церкви. Выбор начала летоисчисления (установление эры) является условным и связан чаще всего с религиозными событиями – сотворение Мира, всемирный потоп, рождение Христа и т.д. Месяц и год не содержат целого числа суток, все эти три меры времени несоизмеримы, и невозможно достаточно просто выразить одну из них через другую.

3 слайд

Описание слайда:

Лунный календарь В основе календаря лежит синодический лунный месяц продолжительностью 29,5 средних солнечных суток. Возник свыше 30000 лет назад. Лунный год календаря содержит 354 (355) суток (на 11,25 суток короче солнечного) и делится на 12 месяцев по 30 (нечетные) и 29 (четные) суток в каждом. Поскольку календарный месяц на 0,0306 суток короче синодического и за 30 лет разница между ними достигает 11 суток, в арабском лунном календаре в каждом 30-летнем цикле насчитывается 19 "простых" лет по 354 суток и 11 "високосных" по 355 суток (2-й, 5-й, 7-й, 10-й, 13-й, 16-й, 18-й, 21-й, 24-й, 26-й, 29-й годы каждого цикла). Турецкий лунный календарь менее точен: в его 8 –летнем цикле 5 "простых" и 3 "високосных" года. Новогодняя дата не фиксируется (медленно перемещается из года в год). Лунный календарь принят в качестве религиозного и государственного в мусульманских государствах Афганистане, Ираке, Иране, Пакистане, ОАР и других. Для планирования и регулирования хозяйственной деятельности параллельно применяются солнечный и лунно-солнечный календари.

4 слайд

Описание слайда:

Юлианский календарь – старый стиль Современный календарь берёт начало от древнеримского солнечного календаря, который был введён с 1 января 45 года до нашей эры в результате реформы, осуществлённой в 46 году до нашей эры Юлием Цезарем. День 1 января стал также началом нового года (до этого в римском календаре новый год начинался 1 марта). Точность юлианского календаря невысока: каждые 128 лет накапливается лишний день. Из-за этого, например, Рождество, первоначально почти совпадавшее с зимним солнцестоянием, постепенно сдвигалось в сторону весны. Наиболее заметной разница становилась весной и осенью вблизи дней равноденствия, когда скорость изменения продолжительности суток и положения солнца максимальна.

5 слайд

Описание слайда:

Григорианский календарь – новый стиль Вследствие того, что продолжительность юлианского календаря была больше солнечного в конце XVI века весеннее равноденствие, которое в 325 году нашей эры приходилось на 21 марта, наступало уже 11 марта. Ошибка была исправлена в 1582 году, когда на основе буллы папы Римского Григория XIII была произведена реформа юлианского календаря для его исправления, счёт дней был передвинут на 10 суток вперёд. Исправленный календарь получил название «нового стиля», а за старым юлианским укрепилось название «старый стиль». Новый стиль также не является совершенно точным, но ошибка в 1 сутки накопится по нему только через 3300 лет.

6 слайд

Описание слайда:

Другие солнечные календари Персидский календарь, определявший продолжительность тропического года в 365,24242 суток; 33-летний цикл включает в себя 25 "простых" и 8 "високосных" лет. Значительно точнее григорианского: ошибка в 1 год "набегает" за 4500 лет. Разработан Омаром Хайямом в 1079 году; применялся на территории Персии и ряда других государств до середины XIX века. Коптский календарь похож на юлианский: в году насчитывается 12 месяцев по 30 суток; после 12 месяца в "простом" году добавляется 5, в "високосном" – 6 дополнительных дней. Используется в Эфиопии и некоторых других государствах (Египет, Судан, Турция и т.д.) на территории проживания коптов.

7 слайд

Описание слайда:

Лунно-солнечный календарь Лунно-солнечный календарь, в котором движение Луны согласовывается с годичным движением Солнца. Год состоит из 12 лунных месяцев по 29 и по 30 суток в каждом, к которым для учета движения Солнца периодически добавляются "високосные" годы, содержащие дополнительный 13-й месяц. В результате "простые" годы продолжаются 353, 354, 355 суток, а "високосные" - 383, 384 или 385 суток. Возник в начале I тысячелетия до н.э., применялся в Древнем Китае, Индии, Вавилоне, Иудее, Греции, Риме. В настоящее время принят в Израиле (начало года приходится на разные дни между 6 сентября и 5 октября) и применяется, наряду с государственным, в странах Юго-Восточной Азии (Вьетнаме, Китае и т.д.).

8 слайд

Описание слайда:

Восточный календарь 60-летний календарь основан на периодичности движения Солнца, Луны и планет Юпитера и Сатурна. Возник в начале II тысячелетия до н.э. в Восточной и Юго-Восточной Азии. В настоящее время используется в Китае, Корее, Монголии, Японии и некоторых других странах данного региона. В 60-летнем цикле современного восточного календаря насчитывается 21912 суток (в первых 12-ти годах содержится 4371 суток; во вторых и четвертых – 4400 и 4401суток; в третьих и в пятых – 4370 суток). В этот промежуток времени укладывается два 30-летних цикла Сатурна (равных сидерическим периодам его обращения Т Сатурна = 29,46 ≈ 30 лет), приблизи-тельно три 19-летних лунно-солнечных цикла, пять 12-летних циклов Юпитера (равных сидерическим периодам его обращения Т Юпитера = 11,86 ≈12 лет) и пять 12-летних лунных циклов. Количество дней в году непостоянно и может составлять в "простые" годы 353, 354, 355 суток, в високосные 383, 384, 385 суток. Начало года в разных государствах приходится на различные даты с 13 января по 24 февраля. Текущий 60-летний цикл начался в 1984 году.

9 слайд

Описание слайда:

Календарь Майя и Ацтеков Центральноамериканский календарь культур индейцев майя и ацтеков применялся в период около 300–1530 гг. н.э. Основан на периодичности движения Солнца, Луны и синодических периодов обращения планет Венеры (584 d) и Марса(780 d). "Длинный" год продолжительностью 360 (365) суток состоял из 18 месяцев по 20 суток в каждом и 5 праздничных дней - «смены власти богов». Параллельно в культурно-религиозных целях использовался "короткий год" из 260 суток(1/3 синодического периода обращения Марса) делился на 13 месяцев по 20 суток в каждом; "номерные" недели состояли из 13 дней, имевших свой номер и название. Сочетание всех этих промежутков повторялось каждые52 года. За начало летоисчисления у майя бралась мифическая дата 5 041738 г. д.н.э. Периоды времени у майя: 1 кин=1 день, 1 виналь - 20 кин,1тун= 1 виналь * 18 = 360кинов, катун = 20 тун (20 лет), алавтун = 64000000 лет! Продолжительность тропического года была определена с высочайшей точностью в 365,2420 d (ошибка в 1 сутки накапливается за5000 лет, а в нынешнем в григорианском - 2735 лет!); лунного синодического месяца –29,53059 d .

10 слайд

Описание слайда:

Идеальный календарь Существующие календари имеют многочисленные недостатки в виде: недостаточного соответствия продолжительности тропического года и датам астрономических явлений, связанных с движением Солнца по небесной сфере, неравной и непостоянной продолжительности месяцев, несогласованности чисел месяца и дней недели, несоответствия их названий положению в календаре и т.д. Идеальный вечный календарь обладает неизменной структурой, позволяющей быстро и однозначно определять дни недели по любой календарной дате летоисчисления. Одним из наилучших проектов вечных календарей был рекомендован к рассмотрению Генеральной Ассамблеей ООН в1954 году: при схожести с григорианским календарем он был проще и удобнее. Тропический год делится на 4 квартала по 91сутки (13 недель). Каждый квартал начинается с воскресения и кончается субботой; состоит из 3 месяцев, в первом месяце 31 сутки, во втором и третьем – 30 суток. В каждом месяце 26 рабочих дней. Первый день года всегда воскресение. Он оказался не реализован по религиозным соображениям. Введение единого Всемирного вечного календаря остается одной из проблем современности.

11 слайд

Описание слайда:

Летоисчисление: эпохи Начальная дата и последующая система летоисчисления называются эрой. Начальную точку отсчета эры называют ее эпохой. С древних времен начало определенной эры (известно более 1000 эр в различных государствах различных регионов Земли, в том числе 350 – в Китае и 250 в Японии) и весь ход летоисчисления связывался с важными легендарными, религиозными или (реже)реальными событиями: временем царствования определенных династий и отдельных императоров, войнами, революциями, олимпиадами, основанием городов и государств, "рождением" бога (пророка) или "сотворением мира". За начало китайской 60-летней цикловой эры принята дата 1-го года царствования императора Хуанди - 2697 г. до н.э. В Древней Греции счет времени велся по олимпиадам, с эпохи 1 июля 776 г.до н.э. В Древнем Вавилоне"эра Набонассара" началась 26 февраля 747 г. до н.э

12 слайд

Описание слайда:

Летоисчисление: эпохи В Римской империи счет велся от "основания Рима" с 21 апреля 753 г. до н.э. и с дня воцарения императора Диоклетиана 29 августа 284 г. н.э. В Византийской империи и позднее, по традиции, на Руси – с принятия христианства князем Владимиром Святославовичем (988 г. н.э.) до указа Петра I (1700 г.н.э.) счет лет велся "от сотворения мира": за начало отсчета была принята дата 1 сентября 5508 г. до н.э (первый год "византийской эры"). В Древнем Израиле(Палестине) "сотворение мира" произошло попозже: 7 октября 3761 г. до н.э (первый год "еврейской эры"). Существовали и другие, отличные от наиболее распространенных вышеуказанных эр "от сотворения мира". Рост культурно-экономических связей и широкое распространение христианской религии на территории Западной и Восточной Европы породили необходимость в унификации систем летоисчисления, единиц измерения и счета времени.

13 слайд

Описание слайда:

Летоисчисление: эры Современное летоисчисление – "наша эра", "эра от Рождества Христова" (Р.Х.), Anno Domeni (A.D.– "год господа") – ведется от произвольно выбранной даты рождения Иисуса Христа. Поскольку ни в одном историческом документе она не указана, а Евангелия противоречат друг другу, ученый монах Дионисий Малый в 278 г. эры Диоклетиана решил "научно", на основе астрономических данных вычислить дату эпохи. В основу расчетом была положены:28-летний "солнечный круг" – промежуток времени, за который числа месяцев приходятся точно на те же дни недели, и 19-летний "лунный круг"– промежуток времени, за который одинаковые фазы Луны приходятся на одни и те же дни месяца. Произведение циклов "солнечного"и "лунного" круга с поправкой на 30-летнее время жизни Христа(28’19S + 30 = 572) дало начальную дату современного летоисчисления. Счет лет согласно эре "от Рождества Христова" "приживался" очень медленно: вплоть до XV века н.э. (т.е.даже 1000 лет спустя) в официальных документах Западной Европы указывалось 2 даты: от сотворения мира и от Рождества Христова(A.D.).

14 слайд

Описание слайда:

Летоисчисление: эры В мусульманском мире за начало летоисчисления принято 16 июля 622 года нашей эры– день "хиджжры" (переселения пророка Мохаммеда из Мекки в Медину). Перевод дат из "мусульманской"системы летоисчисления ТМ в христианскую" (григорианскую) ТГ можно осуществить по формуле: ТГ = ТМ –ТМ /33 + 621 (лет). Для удобства астрономических и хронологических расчетов с конца XVI века применяется предложенное Ж. Скалигером летоисчисление юлианского периода (J.D.). Непрерывный счет дней в нем ведется с1 января 4713 г. до н.э. Моменты минимумов и максимумов переменных звезд в справочниках приводятся в JD.