Тригонометрические уравнения — формулы, решения, примеры. Тема урока: "Однородные тригонометрические уравнения" (10-й класс)

С помощью этого видеоурока учащиеся смогут изучить тему однородных тригонометрических уравнений.

Дадим определения:

1) однородное тригонометрическое уравнение первой степени выглядит как a sin x + b cos x = 0;

2) однородное тригонометрическое уравнение второй степени выглядит как a sin 2 x + b sin x cos x + c cos 2 x = 0.

Рассмотрим уравнение a sin x + b cos x = 0. Если а будет равно нулю, то уравнение будет выглядеть как b cos x = 0; если b равно нулю, то уравнение будет выглядеть как a sin x = 0. Это уравнения, которые мы называли простейшими и решали ранее в предыдущих темах.

Сейчас рассмотрим вариант, когда a и b не равны нулю. С помощью деления частей уравнения на косинус x и осуществим преобразование. Получим a tg x + b = 0, тогда tg x будет равен - b/а.

Из вышеизложенного следует вывод, что уравнение a sin mx + b cos mx = 0 является однородным тригонометрическим уравнением I степени. Чтобы решить уравнение, его части делят на cos mx.

Разберем пример 1. Решить 7 sin (x/2) - 5 cos (x/2) = 0. Сначала части уравнения делим на косинус(x/2). Зная, что синус, деленный на косинус, это тангенс, получим 7 tg (x/2) - 5 = 0. Преобразовывая выражение, найдем, что значение тангенса (x/2)равно 5/7. Решение данного уравнения имеет вид х = arctg a + πn, в нашем случае х = 2 arctg (5/7) + 2πn.

Рассмотрим уравнение a sin 2 x + b sin x cos x + c cos 2 x = 0:

1) при а равном нулю уравнение будет выглядеть как b sin x cos x + c cos 2 x = 0. Преобразуя, получим выражение cos x (b sin x + c cos x) = 0 и перейдем к решению двух уравнений. После деления частей уравнения на косинус x, получим b tg x + c = 0, а значит tg x = - c/b. Зная, что х = arctg a + πn, то решением в данном случае будет х = arctg (- с/b) + πn.

2) если а не равно нулю, то, путем деления частей уравнения на косинус в квадрате, получим уравнение, содержащее тангенс, которое будет квадратным. Это уравнение можно решить путем ввода новой переменной.

3) при с равном нулю уравнение примет вид a sin 2 x + b sin x cos x = 0. Это уравнение можно решить, если вынести синус x за скобку.

1. посмотреть, есть ли в уравнении a sin 2 x;

2. если в уравнении член a sin 2 x содержится, то решить уравнение можно путем деления обеих частей на косинус в квадрате и последующим введением новой переменной.

3. если в уравнении a sin 2 x не содержится, то решить уравнение можно с помощью выноса за скобки cosx.

Рассмотрим пример 2. Вынесем за скобки косинус и получим два уравнения. Корень первого уравнения x = π/2 + πn. Для решения второго уравнения разделим части этого уравнения на косинус x, путем преобразований получим х = π/3 + πn. Ответ: x = π/2 + πn и х = π/3 + πn.

Решим пример 3, уравнение вида 3 sin 2 2x - 2 sin 2x cos 2x + 3 cos 2 2x = 2 и найдем его корни, которые принадлежат отрезку от - π до π. Т.к. это уравнение неоднородное, необходимо привести его к однородному виду. Используя формулу sin 2 x + cos 2 x = 1, получим уравнение sin 2 2x - 2 sin 2x cos 2x + cos 2 2x = 0. Разделив все части уравнения на cos 2 x, получим tg 2 2x + 2tg 2x + 1 = 0. Используя ввод новой переменной z = tg 2x, решим уравнение, корнем которого будет z = 1. Тогда tg 2x = 1, откуда следует, что x = π/8 + (πn)/2. Т.к. по условию задачи нужно найти корни, которые принадлежат отрезку от - π до π, решение будет иметь вид - π< x <π. Подставляя найденное значение x в данное выражение и преобразовывая его, получим - 2,25 < n < 1,75. Т.к. n - это целые числа, то решению уравнения удовлетворяют значения n: - 2; - 1; 0; 1. При этих значениях n получим корни решения исходного уравнения: x = (- 7π)/8, x = (- 3π)/8, x =π/8, x = 5π/8.

ТЕКСТОВАЯ РАСШИФРОВКА:

Однородные тригонометрические уравнения

Сегодня мы разберем, как решаются «Однородные тригонометрические уравнения». Это уравнения специального вида.

Познакомимся с определением.

Уравнение вида а sin x+ b cos x = 0 (а синус икс плюс бэ косинус икс равно нулю) называют однородным тригонометрическим уравнением первой степени;

уравнение вида а sin 2 x+ b sin x cos x cos 2 x = 0 (а синус квадрат икс плюс бэ синус икс косинус икс плюс сэ косинус квадрат икс равно нулю) называют однородным тригонометрическим уравнением второй степени.

Если а=0 , то уравнение примет вид b cos x = 0.

Еслиb = 0 , то получим а sin x= 0.

Данные уравнения являются элементарными тригонометрическими, и их решение мы рассматривали на прошлых наших темах

Рассмотрим тот случай, когда оба коэффициента не равны нулю. Разделим обе части уравнения а sin x + b cos x = 0 почленно на cos x .

Это мы можем сделать, так как косинус икс отличен от нуля. Ведь, если cos x = 0 , то уравнение а sin x + b cos x = 0 примет вид а sin x = 0 , а ≠ 0, следовательно sin x = 0 . Что невозможно, ведь по основному тригонометрическому тождеству sin 2 x+ cos 2 x =1 .

Разделив обе части уравнения а sin x + b cos x = 0 почленно на cos x , получим: + =0

Осуществим преобразования:

1. Так как = tg x, то = а tg x

2 сокращаем на cos x , тогда

Таким образом получим следующее выражение а tg x + b =0 .

Осуществим преобразование:

1.перенесем b в правую часть выражения с противоположным знаком

а tg x =- b

2. Избавимся от множителя а разделив обе части уравнения на а

tg x= - .

Вывод: Уравнение вида а sin m x+ b cos mx = 0 (а синус эм икс плюс бэ косинус эм икс равно нулю) тоже называют однородным тригонометрическим уравнением первой степени. Чтобы решить его, делят обе части на cos mx .

ПРИМЕР 1. Решить уравнение 7 sin - 5 cos = 0 (семь синус икс на два минус пять косинус икс на два равно нулю)

Решение. Разделим обе части уравнения почленно на cos, получим

1. = 7 tg (так как соотношение синуса к косинусу - это тангенс, то семь синус икс на два деленное на косинус икс на два, равно 7 тангенс икс на два)

2. -5 = -5 (при сокращении cos)

Таки образом получили уравнение

7tg - 5 = 0, Преобразуем выражение, перенесем минус пять в правую часть, изменив знак.

Мы привели уравнение к виду tg t = a, где t=, a =. А так как данное уравнение имеет решение для любого значения а и эти решения имеют вид

х = arctg a + πn, то решение нашего уравнения будет иметь вид:

Arctg + πn, найдем х

х=2 arctg + 2πn.

Ответ: х=2 arctg + 2πn.

Перейдем к однородному тригонометрическому уравнению второй степени

а sin 2 x+b sin x cos x + с cos 2 x= 0.

Рассмотрим несколько случаев.

I. Если а=0 , то уравнение примет вид b sin x cos x cos 2 x = 0.

При решении э то уравнения используем метод разложения на множители. Вынесем cos x за скобку и получим: cos x (b sin x cos x )= 0 . Откуда cos x = 0 или

b sin x + с cos x= 0. А эти уравнения мы уже умеем решать.

Разделим обе части уравнения почленно на cosх, получим

1 (так как соотношение синуса к косинусу - это тангенс).

Таким образом получаем уравнение: b tg х+с=0

Мы привели уравнение к виду tg t = a, где t= х, a =. А так как данное уравнение имеет решение для любого значения а и эти решения имеют вид

х = arctg a + πn, то решение нашего уравнения будет:

х = arctg + πn, .

II. Если а≠0 , то обе части уравнения почленно разделим на cos 2 x .

(Рассуждая аналогично, как и в случае с однородным тригонометрическим уравнением первой степени, косинус икс не может обратится в ноль).

III. Если с=0 , то уравнение примет вид а sin 2 x + b sin x cos x = 0. Это уравнение решается методом разложения на множители (вынесем sin x за скобку).

Значит, при решении уравнения а sin 2 x + b sin x cos x cos 2 x = 0 можно действовать по алгоритму:

ПРИМЕР 2. Решить уравнение sinxcosx - cos 2 x= 0 (синус икс, умноженный на косинус икс минус корень из трех, умноженный на косинус квадрат икс равно нулю).

Решение. Разложим на множители (вынесем за скобку cosx). Получим

cos x(sin x - cos x)= 0, т.е. cos x=0 илиsin x - cos x= 0.

Ответ: х =+ πn, х= + πn.

ПРИМЕР 3. Решить уравнение 3sin 2 2x - 2 sin2xcos2 x +3cos 2 2x= 2 (три синус квадрат двух икс минус удвоенное произведение синуса двух икс на косинус двух икс плюс три косинус квадрат двух икс) и найти его корни, принадлежащие промежутку (- π; π).

Решение. Это уравнение не однородное, поэтому проведем преобразования. Число 2, содержащееся в правой части уравнения, заменим произведением 2·1

Так как по основному тригонометрическому тождеству sin 2 x + cos 2 x =1, то

2 ∙ 1= 2 ∙ (sin 2 x + cos 2 x) = раскрыв скобки получим: 2 sin 2 x + 2 cos 2 x.

2 ∙ 1= 2 ∙ (sin 2 x + cos 2 x) =2 sin 2 x + 2 cos 2 x

Значит уравнение 3sin 2 2x - 2 sin2xcos2 x +3cos 2 2x= 2 примет вид:

3sin 2 2x - 2 sin 2x cos2 x +3cos 2 2x = 2 sin 2 x + 2 cos 2 x.

3sin 2 2x - 2 sin 2x cos2 x +3cos 2 2x - 2 sin 2 x - 2 cos 2 x=0,

sin 2 2x - 2 sin 2x cos2 x +cos 2 2x =0.

Получили однородное тригонометрическое уравнение второй степени. Применим способ почленного деления на cos 2 2x:

tg 2 2x - 2tg 2x + 1 = 0.

Введем новую переменную z= tg2х.

Имеем z 2 - 2 z + 1 = 0. Это квадратное уравнение. Заметив в левой части формулу сокращенного умножения - квадрат разности (), получим (z - 1) 2 = 0, т.е. z = 1. Вернемся к обратной замене:

Мы привели уравнение к виду tg t = a, где t= 2х, a =1 . А так как данное уравнение имеет решение для любого значения а и эти решения имеют вид

х = arctg x a + πn, то решение нашего уравнения будет:

2х= arctg1 + πn,

х= + , (икс равно сумме пи на восемь и пи эн на два).

Нам осталось найти такие значения х, которые содержатся в интервале

(- π; π), т.е. удовлетворяют двойному неравенству - π х π. Так как

х= + , то - π + π. Разделим все части этого неравенства на π и умножим на 8, получим

перенесем единицу в право и в лево, поменяв знак на минус один

разделим на четыре получим,

для удобства в дробях выделим целые части

-

Этому неравенству удовлетворяют следующие целочисленные n: -2, -1, 0, 1

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

где f (x , y ) – любая функция, отличная от функции

f (x , y ) = ax +by + c ,

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Ответ : (6 ; 3)

Пример 2 . Решить уравнение

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y ) ,

где y – любое число.

линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное , имеют вид

g (x , y )

Пример 4 . Решить систему уравнений

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Решая уравнение

x 1 = - 1 , x 2 = 9 .

Следовательно,

y 1 = 8 - x 1 = 9 ,
y 2 = 8 - x 2 = - 1 .

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное , имеют вид

где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

Решение . Решим однородное уравнение

3x 2 + 2xy - y 2 = 0 ,

3x 2 + 17xy + 10y 2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

5y 2 = - 20 ,

которое корней не имеет.

В случае, когда

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

Ответ : (- 2 ; 3) , (2 ; - 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

У системы (16) первое уравнение - линейное , поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы.

Вы можете заказать подробное решение вашей задачи !!!

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

`\frac {sin x-sin^2 x}{1+cos x}=0`

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Стоп! Давай всетаки попытаемся разобраться в этой громоздкой формуле.

На первом месте должна идти первая переменная в степени с некоторым коэффициентом. В нашем случае это

В нашем случае это. Как мы выяснили, значит здесь степень при первой переменной - сходится. И вторая переменная в первой степени - на месте. Коэффициент.

У нас это.

Первая переменная в степени, и вторая переменная в квадрате, с коэффициентом. Это последний член уравнения.

Как видишь, наше уравнение подходит под определение в виде формулы.

Давай рассмотрим вторую (словесную) часть определения.

У нас две неизвестные и. Здесь сходится.

Рассмотрим все слагаемые. В них сумма степеней неизвестных должна быть одинакова.

Сумма степеней равна.

Сумма степеней равна (при и при).

Сумма степеней равна.

Как видишь, все сходится!!!

Теперь давай потренируемся в определении однородных уравнений.

Определи, какие из уравнений - однородные:

Однородные уравнения - уравнения под номерами:

Рассмотрим отдельно уравнение.

Если мы разделим каждое слагаемое на разложим каждое слагаемое, то получим

А это уравнение полностью попадает под определение однородных уравнений.

Как решать однородные уравнения?

Пример 2.

Разделим уравнение на.

У нас по условию y не может быть равен. Поэтому мы можем смело делить на

Произведя замену, мы получим простое квадратное уравнение:

Так как это приведенное квадратное уравнение, воспользуемся теоремой Виета:

Произведя обратную замену, получаем ответ

Ответ:

Пример 3.

Разделим уравнение на (по условию).

Ответ:

Пример 4.

Найдите, если.

Здесь нужно не делить, а умножать. Умножим все уравнение на:

Произведем замену и решим квадратное уравнение:

Произведя обратную замену, получим ответ:

Ответ:

Решение однородных тригонометрических уравнений.

Решение однородных тригонометрических уравнений ничем не отличается от способов решения, описанных выше. Только здесь, помимо прочего, нужно немного знать тригонометрию. И уметь решать тригонометрические уравнения (для этого можешь прочитать раздел ).

Рассмотрим такие уравнения на примерах.

Пример 5.

Решите уравнение.

Мы видим типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Подобные однородные уравнения решаются не сложно, но перед тем, как разделить уравнения на, рассмотрим случай, когда

В этом случае уравнение примет вид: , значит. Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому, и на него можно смело делить:

Так как уравнение приведенное, то по теореме Виета:

Ответ:

Пример 6.

Решите уравнение.

Как и в примере, нужно разделить уравнение на. Рассмотрим случай, когда:

Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому.

Сделаем замену и решим квадратное уравнение:

Сделаем обратную замену и найдем и:

Ответ:

Решение однородных показательных уравнений.

Однородные уравнения решаются так же, как рассмотренных выше. Если ты забыл, как решать показательные уравнения - посмотри соответствующий раздел ()!

Рассмотрим несколько примеров.

Пример 7.

Решите уравнение

Представим как:

Мы видим типичное однородное уравнение, с двумя переменными и суммой степеней. Разделим уравнение на:

Как можно заметить, произведя замену, мы получим приведенное квадратное уравнение (при этом не нужно опасаться деления на ноль - всегда строго больше нуля):

По теореме Виета:

Ответ: .

Пример 8.

Решите уравнение

Представим как:

Разделим уравнение на:

Произведем замену и решим квадратное уравнение:

Корень не удовлетворяет условию. Произведем обратную замену и найдем:

Ответ:

ОДНОРОДНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Сначала на примере одной задачки напомню что такое однородные уравнения и что из себя представляет решение однородных уравнений.

Решите задачу:

Найдите, если.

Здесь можно заметить любопытную вещь: если поделить каждое слагаемое на, получим:

То есть, теперь нет отдельных и, - теперь переменной в уравнении является искомая величина. И это обычное квадратное уравнение, которое легко решить с помощью теоремы Виета: произведение корней равно, а сумма - это числа и.

Ответ:

Уравнения вида

называется однородным. То есть, это уравнение с двумя неизвестными, в каждом слагаемом которого одинаковая сумма степеней этих неизвестных. Например, в примере выше эта сумма равна. Решение однородных уравнений осуществляется делением на одну из неизвестных в этой степени:

И последующей заменой переменных: . Таким образом получаем уравнение степени с одной неизвестной:

Чаще всего нам будут встречаться уравнения второй степени (то есть квадратные), а их решать мы умеем:

Отметим, что делить (и умножать) все уравнение на переменную можно только если мы убеждены, что эта переменная не может быть равна нулю! Например, если нас просят найти, сразу понимаем, что, поскольку на делить нельзя. В случаях, когда это не так очевидно, необходимо отдельно проверять случай когда эта переменная равна нулю. Например:

Решите уравнение.

Решение:

Видим здесь типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Но, прежде чем разделить на и получить квадратное уравнение относительно, мы должны рассмотреть случай, когда. В этом случае уравнение примет вид: , значит, . Но синус и косинус не могут быть одновременно равны нулю, ведь по основному тригонометрическому тождеству: . Поэтому, и на него можно смело делить:

Надеюсь, это решение полностью понятно? Если нет, прочитай раздел . Если же непонятно, откуда взялось, тебе нужно вернуться еще раньше - к разделу .

Реши сам:

  1. Найдите, если.
  2. Найдите, если.
  3. Решите уравнение.

Здесь я кратко напишу непосредственно решение однородных уравнений:

Решения:

    Ответ: .

    А здесь надо не делить, а умножать:

    Ответ:

    Если тригонометрические уравнения ты еще не проходил, этот пример можно пропустить.

    Так как здесь нам нужно делить на, убедимся сперва, сто он не равен нулю:

    А это невозможно.

    Ответ: .

ОДНОРОДНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Решение всех однородных уравнений сводится к делению на одну из неизвестных в степени и дальнейшей заменой переменных.

Алгоритм:

Учитель: Синицина С.И.

МБОУ СОШ №20 им.Милевского Н.И.

Тема: Однородные тригонометрические уравнения (10 класс)

Цели: Ввести понятие однородных тригонометрических уравнений I и II степени;

Сформулировать и отработать алгоритм решения однородных тригонометрических

уравнений I и II степени;

Закрепить навыки решения всех видов тригонометрических уравнений через

развитие и совершенствование умений применять имеющиеся знания в изменённой

ситуации, через умение делать выводы и обобщение

Воспитание у учащихся аккуратности, культуры поведения.

Тип урока: урок формирования новых знаний.

Оборудование: компьютер, мультимедийный проектор, экран, доска, презентация

Ход урока

I. Организационный момент

Приветствие учащихся, мобилизация внимания.

II. Актуализация опорных знаний (Домашняя работа проверяется консультантами до урока. Учитель подводит итог выполнения домашнего задания.)

Учитель: Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений.

Устная работа

  1. Какое уравнение мы называем тригонометрическим?
  2. Назовите алгоритм решения уравнения cos t = a
  3. Назовите алгоритм решения уравнения sin t = a

III. Мотивация обучения.

Учитель: нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

Вопросы спроецированы на доску. Разгадав кроссворд, ребята прочитают слово “однородные”.

1.Значение переменной, обращающее уравнение вверное равенство? (Корень)

2.Единица измерения углов? (Радиан)

3.Числовой множитель в произведении?(Коэффициент)

4.Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

5.Какая математическая модель необходима для введения тригонометрических функций?(Окружность)

6.Какая из тригонометрических функций четная?(Косинус)

7.Как называется верное равенство? (Тождество)

8.Равенство с переменной? (Уравнения)

9.Уравнения, имеющие одинаковые корни? (Равносильные)

10.Множество корней уравнения? (Решение)

IV. Объяснение новой темы

Учитель: Тема урока “Однородные тригонометрические уравнения”.

Запишем тему урока в тетрадь. Однородные тригонометрические уравнения бывают первой и второй степени.

Запишем определение однородного уравнения первой степени. Я на примере показываю решение такого вида уравнения, вы составляете алгоритм решения однородного тригонометрического уравнения первой степени.

Уравнение вида а sinx + b cosx = 0 называют однородным тригонометрическим уравнение первой степени.

Рассмотрим решение уравнения, когда коэффициенты а и в отличны от 0.

Пример1: 2sinx - 3cosx = 0

Разделив обе части уравнения почленно на cosx, получим

2sinx/ cosx - 3cosx/ cosx = 0

2 tgx -3 =0, tgx =3/2, x = arctg3/2 + πn, nє Z,

Внимание! Делить на одно и то же выражение можно лишь в том случае, если это выражение нигде не обращается в 0. Анализируем. Если косинус равен 0, то, чтобы всё выражение обратилось в 0, синус должен быть тоже равен 0 (учитываем, что коэффициенты отличны от 0). Но мы знаем, что синус и косинус обращаются в нуль в различных точках. Поэтому такую операцию производить можно при решении этого вида уравнений.

Уравнение вида а sin mx + b cos mx = 0 тоже называют однородным тригонометрическим уравнение первой степени и решают также делением обеих частей уравнения на cos mх.

Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x = 0 называют однородным тригонометрическим уравнением второй степени.

Пример 2: sin 2 x – 3 sinx cosx +2 cos 2 x = 0

Коэффициент а отличен от 0 и поэтому как и в предыдущем уравнении соsх 0 и поэтому можно воспользоваться способом деления обеих частей уравнения на соs 2 х.

Получим tg 2 x – 3 tgx +2 = 0

Решаем путем введения новой переменной пусть tgx = а, тогда получаем уравнение

а 2 -3 а +2 = 0 а 1 = 1 а 2 = 2

Возвращаемся к замене

tgx =1, x = ¼π+ πn, nє Z tgx = 2 , x = arctg 2 + πn, nє Z

Ответ: x = ¼π + πn, nє Z, x = arctg 2 + πn, nє Z

Если коэффициент а = 0, то уравнение примет вид –3sinx cosx + 2cos 2 x = 0 решаем способом вынесения общего множителя – cosx за скобки: – cosx (3 sinx – 2cosx) = 0,

cosx = 0 или 3sinx – 2cosx = 0. Второе уравнение является однородным уравнением первой степени.

Если коэффициент с = 0, то уравнение примет вид sin 2 x -3sinx cosx = 0 решаем способом вынесения общего множителя sinx за скобки: sinx (sinx -3 cosx) = 0,

sinx = 0 или sinx -3 cosx = 0. Второе уравнение является однородным уравнением первой степени.

Алгоритм решения однородного тригонометрического уравнения второй степени:

1.Посмотреть, есть ли в уравнении член a sin 2 x.

2.Если член asin 2 x в уравнении содержится (т.е. а 0), то уравнение решается делением

обеих частей уравнения на cos 2 x и последующим введение новой переменной а = tgx

3. Если член asin 2 x в уравнении не содержится (т.е. а = 0), то уравнение решается методом разложения на множители: за скобки выносят cosx.

Однородные уравнения вида a sin 2 mx + b sin mx cos mx + c cos 2 mx = 0 решаются таким же способом

V. Усвоение новых знаний

Являются ли однородными данные уравнения?

  1. sin x = 2 cos x
  2. sin 5x + cos 5x = 0
  3. sin 3x - cos 3x = 2
  4. sin 2 8x – 5 sin8x cos8x +2 cos 2 8x =0

V I. Физкультминутка

V II. Формирование навыков решения однородных тригонометрических уравнений

Открываем задачники стр.47 № 18.10(а), № 18.11 (а,б),18.12(г)

VI II. Самостоятельная работа (учащиеся выбираю дифференцированные задания по двум вариантам)

1 вариант 2 вариант

1) sinx + 2cosx = 0. 1) sinx - 4cosx = 0.

2) sin 2 x + 2sinx cosx -3 cos 2 x = 0 2) sin 2 x – 4 sinx cosx +3 cos 2 x = 0

3) 2sin 2 2x – 5 sin2x cos2x +2 cos 2 2x = 0 3) 3sin 2 3x +10 sin3x cos3x +3 cos 2 3x = 0

Правильные ответы проецируются на доску.

IX. Подведение итогов урока, выставление оценок

С каким видом тригонометрических уравнений мы познакомились на уроке?

Какие уравнения мы называем однородными?

Сформулируйте алгоритмы решения однородных тригонометрических уравнений первой и второй степени.

X. Задание на дом: Cоставить и решить 2 однородных уравнения первой степени и 1 однородное уравнение второй степени