Интегрирование простейших рациональных дробей 4 го типа. Интегрирование — MT1205: Математический анализ для экономистов — Бизнес-информатика. Тема: интегрирование рациональных дробей

Как я уже отмечал, в интегральном исчислении нет удобной формулы для интегрирования дроби . И поэтому наблюдается грустная тенденция: чем «навороченнее» дробь, тем труднее найти от нее интеграл. В этой связи приходится прибегать к различным хитростям, о которых я сейчас и расскажу. Подготовленные читатели могут сразу воспользоваться оглавлением :

  • Метод подведения под знак дифференциала для простейших дробей

Метод искусственного преобразования числителя

Пример 1

Кстати, рассмотренный интеграл можно решить и методом замены переменной, обозначая , но запись решения получится значительно длиннее.

Пример 2

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Следует заметить, что здесь метод замены переменной уже не пройдёт.

Внимание, важно! Примеры №№1,2 являются типовыми и встречаются часто . В том числе, подобные интегралы нередко возникают в ходе решения других интегралов, в частности, при интегрировании иррациональных функций (корней).

Рассмотренный приём работает и в случае, если старшая степень числителя, больше старшей степени знаменателя .

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

Начинаем подбирать числитель.

Алгоритм подбора числителя примерно такой:

1) В числителе мне нужно организовать , но там . Что делать? Заключаю в скобки и умножаю на : .

2) Теперь пробую раскрыть эти скобки, что получится? . Хмм… уже лучше, но никакой двойки при изначально в числителе нет. Что делать? Нужно домножить на :

3) Снова раскрываю скобки: . А вот и первый успех! Нужный получился! Но проблема в том, что появилось лишнее слагаемое . Что делать? Чтобы выражение не изменилось, я обязан прибавить к своей конструкции это же :
. Жить стало легче. А нельзя ли еще раз в числителе организовать ?

4) Можно. Пробуем: . Раскрываем скобки второго слагаемого:
. Простите, но у меня вообще-то было на предыдущем шаге , а не . Что делать? Нужно домножить второе слагаемое на :

5) Снова для проверки раскрываю скобки во втором слагаемом:
. Вот теперь нормально: получено из окончательной конструкции пункта 3! Но опять есть маленькое «но», появилось лишнее слагаемое , значит, я обязан прибавить к своему выражению :

Если всё выполнено правильно, то при раскрытии всех скобок у нас должен получиться исходный числитель подынтегральной функции. Проверяем:
Гуд.

Таким образом:

Готово. В последнем слагаемом я применил метод подведения функции под дифференциал.

Если найти производную от ответа и привести выражение к общему знаменателю, то у нас получится в точности исходная подынтегральная функция . Рассмотренный метод разложения в сумму – есть не что иное, как обратное действие к приведению выражения к общему знаменателю.

Алгоритм подбора числителя в подобных примерах лучше выполнять на черновике. При некоторых навыках будет получаться и мысленно. Припоминаю рекордный случай, когда я выполнял подбор для 11-й степени, и разложение числителя заняло почти две строчки Вёрда.

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения.

Метод подведения под знак дифференциала для простейших дробей

Переходим к рассмотрению следующего типа дробей.
, , , (коэффициенты и не равны нулю).

На самом деле пара случаев с арксинусом и арктангенсом уже проскальзывала на уроке Метод замены переменной в неопределенном интеграле . Решаются такие примеры способом подведения функции под знак дифференциала и дальнейшим интегрированием с помощью таблицы. Вот еще типовые примеры с длинным и высоким логарифмом:

Пример 5

Пример 6

Тут целесообразно взять в руки таблицу интегралов и проследить, по каким формулам и как осуществляется превращение. Обратите внимание, как и зачем выделяются квадраты в данных примерах. В частности, в примере 6 сначала необходимо представить знаменатель в виде , потом подвести под знак дифференциала. А сделать это всё нужно для того, чтобы воспользоваться стандартной табличной формулой .

Да что смотреть, попробуйте самостоятельно решить примеры №№7,8, тем более, они достаточно короткие:

Пример 7

Пример 8

Найти неопределенный интеграл:

Если Вам удастся выполнить еще и проверку данных примеров, то большой респект – Ваши навыки дифференцирования на высоте.

Метод выделения полного квадрата

Интегралы вида , (коэффициенты и не равны нулю) решаются методом выделения полного квадрата , который уже фигурировал на уроке Геометрические преобразования графиков .

На самом деле такие интегралы сводятся к одному из четырех табличных интегралов, которые мы только что рассмотрели. А достигается это с помощью знакомых формул сокращенного умножения:

Формулы применяются именно в таком направлении, то есть, идея метода состоит в том, чтобы в знаменателе искусственно организовать выражения либо , а затем преобразовать их соответственно в либо .

Пример 9

Найти неопределенный интеграл

Это простейший пример, в котором при слагаемом – единичный коэффициент (а не какое-нибудь число или минус).

Смотрим на знаменатель, здесь всё дело явно сведется к случаю . Начинаем преобразование знаменателя:

Очевидно, что нужно прибавлять 4. И, чтобы выражение не изменилось – эту же четверку и вычитать:

Теперь можно применить формулу :

После того, как преобразование закончено ВСЕГДА желательно выполнить обратный ход: , всё нормально, ошибок нет.

Чистовое оформление рассматриваемого примера должно выглядеть примерно так:

Готово. Подведением «халявной» сложной функции под знак дифференциала: , в принципе, можно было пренебречь

Пример 10

Найти неопределенный интеграл:

Это пример для самостоятельного решения, ответ в конце урока

Пример 11

Найти неопределенный интеграл:

Что делать, когда перед находится минус? В этом случае, нужно вынести минус за скобки и расположить слагаемые в нужном нам порядке: . Константу («двойку» в данном случае) не трогаем!

Теперь в скобках прибавляем единичку. Анализируя выражение, приходим к выводу, что и за скобкой нужно единичку – прибавить:

Тут получилась формула , применяем:

ВСЕГДА выполняем на черновике проверку:
, что и требовалось проверить.

Чистовое оформление примера выглядит примерно так:

Усложняем задачу

Пример 12

Найти неопределенный интеграл:

Здесь при слагаемом уже не единичный коэффициент, а «пятёрка».

(1) Если при находится константа, то её сразу выносим за скобки.

(2) И вообще эту константу всегда лучше вынести за пределы интеграла, чтобы она не мешалась под ногами.

(3) Очевидно, что всё сведется к формуле . Надо разобраться в слагаемом , а именно, получить «двойку»

(4) Ага, . Значит, к выражению прибавляем , и эту же дробь вычитаем.

(5) Теперь выделяем полный квадрат. В общем случае также надо вычислить , но здесь у нас вырисовывается формула длинного логарифма , и действие выполнять не имеет смысла, почему – станет ясно чуть ниже.

(6) Собственно, можно применить формулу , только вместо «икс» у нас , что не отменяет справедливость табличного интеграла. Строго говоря, пропущен один шаг – перед интегрированием функцию следовало подвести под знак дифференциала: , но, как я уже неоднократно отмечал, этим часто пренебрегают.

(7) В ответе под корнем желательно раскрыть все скобки обратно:

Сложно? Это еще не самое сложное в интегральном исчислении. Хотя, рассматриваемые примеры не столько сложны, сколько требуют хорошей техники вычислений.

Пример 13

Найти неопределенный интеграл:

Это пример для самостоятельного решения. Ответ в конце урока.

Существуют интегралы с корнями в знаменателе, которые с помощью замены сводятся к интегралам рассмотренного типа, о них можно прочитать в статье Сложные интегралы , но она рассчитана на весьма подготовленных студентов.

Подведение числителя под знак дифференциала

Это заключительная часть урока, тем не менее, интегралы такого типа встречаются довольно часто! Если накопилась усталость, может, оно, лучше завтра почитать? ;)

Интегралы, которые мы будем рассматривать, похожи на интегралы предыдущего параграфа, они имеют вид: или (коэффициенты , и не равны нулю).

То есть, в числителе у нас появилась линейная функция. Как решать такие интегралы?

Напомним, что дробно-рациональными называют функции вида $$ f(x) = \frac{P_n(x)}{Q_m(x)}, $$ в общем случае являющиеся отношением двух многочленов %%P_n(x)%% и %%Q_m(x)%%.

Если %%m > n \geq 0%%, то рациональную дробь называют правильной , в противном случае — неправильной. Используя правило деления многочленов , неправильную рациональную дробь можно представить в виде суммы многочлена %%P_{n - m}%% степени %%n - m%% и некоторой правильной дроби, т.е. $$ \frac{P_n(x)}{Q_m(x)} = P_{n-m}(x) + \frac{P_l(x)}{Q_n(x)}, $$ где степень %%l%% многочлена %%P_l(x)%% меньше степени %%n%% многочлена %%Q_n(x)%%.

Таким образом, неопределенный интеграл от рациональной функции можно представить суммой неопределенных интегралов от многочлена и от правильной рациональной дроби.

Интегралы от простейших рациональных дробей

Среди правильных рациональных дробей выделяют четыре типа, которые относят к простейшим рациональным дробям :

  1. %%\displaystyle \frac{A}{x - a}%%,
  2. %%\displaystyle \frac{A}{(x - a)^k}%%,
  3. %%\displaystyle \frac{Ax + B}{x^2 + px + q}%%,
  4. %%\displaystyle \frac{Ax + B}{(x^2 + px + q)^k}%%,

где %%k > 1%% — целое и %%p^2 - 4q < 0%%, т.е. квадратные уравнения не имеют действительных корней.

Вычисление неопределенных интегралов от дробей первых двух типов

Вычисление неопределенных интегралов от дробей первых двух типов не вызывает затруднений: $$ \begin{array}{ll} \int \frac{A}{x - a} \mathrm{d}x &= A\int \frac{\mathrm{d}(x - a)}{x - a} = A \ln |x - a| + C, \\ \\ \int \frac{A}{(x - a)^k} \mathrm{d}x &= A\int \frac{\mathrm{d}(x - a)}{(x - a)^k} = A \frac{(x-a)^{-k + 1}}{-k + 1} + C = \\ &= -\frac{A}{(k-1)(x-a)^{k-1}} + C. \end{array} $$

Вычисление неопределенного интегралов от дробей третьего типа

Дробь третьего типа сначала преобразуем, выделив полный квадрат в знаменателе: $$ \frac{Ax + B}{x^2 + px + q} = \frac{Ax + B}{(x + p/2)^2 + q - p^2/4}, $$ так как %%p^2 - 4q < 0%%, то %%q - p^2/4 > 0%%, которое обозначим как %%a^2%%. Заменив также %%t = x + p/2, \mathrm{d}t = \mathrm{d}x%%, преобразуем знаменатель и запишем интеграл от дроби третьего типа в форме $$ \begin{array}{ll} \int \frac{Ax + B}{x^2 + px + q} \mathrm{d}x &= \int \frac{Ax + B}{(x + p/2)^2 + q - p^2/4} \mathrm{d}x = \\ &= \int \frac{A(t - p/2) + B}{t^2 + a^2} \mathrm{d}t = \int \frac{At + (B - A p/2)}{t^2 + a^2} \mathrm{d}t. \end{array} $$

Последний интеграл, используя линейность неопределенного интеграла, представим в виде суммы двух и в первом из них введем %%t%% под знак дифференциала: $$ \begin{array}{ll} \int \frac{At + (B - A p/2)}{t^2 + a^2} \mathrm{d}t &= A\int \frac{t \mathrm{d}t}{t^2 + a^2} + \left(B - \frac{pA}{2}\right)\int \frac{\mathrm{d}t}{t^2 + a^2} = \\ &= \frac{A}{2} \int \frac{\mathrm{d}\left(t^2 + a^2\right)}{t^2 + a^2} + - \frac{2B - pA}{2}\int \frac{\mathrm{d}t}{t^2 + a^2} = \\ &= \frac{A}{2} \ln \left| t^2 + a^2\right| + \frac{2B - pA}{2a} \text{arctg}\frac{t}{a} + C. \end{array} $$

Возвращаясь к исходной переменной %%x%%, в итоге для дроби третьего типа получаем $$ \int \frac{Ax + B}{x^2 + px + q} \mathrm{d}x = \frac{A}{2} \ln \left| x^2 + px + q\right| + \frac{2B - pA}{2a} \text{arctg}\frac{x + p/2}{a} + C, $$ где %%a^2 = q - p^2 / 4 > 0%%.

Вычисление интеграла 4 типа сложно, поэтому в этом курсе не рассматривается.

Введите функцию, для которой надо найти интеграл

После вычисления неопределённого интеграла, вы сможете получить бесплатно ПОДРОБНОЕ решение введённого вами интеграла.

Найдем решение неопределенного интеграла от функции f(x) (первообразную функции).

Примеры

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

Sqrt(x)/(x + 1)

Кубический корень

Cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

X*arcsin(x)

Арккосинус

X*arccos(x)

Применение логарифма

X*log(x, 10)

Натуральный логарифм

Экспонента

Tg(x)*sin(x)

Котангенс

Ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

X*arctg(x)

Арккотангенс

X*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

Ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

X^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

X^2*arctgh(x)*arcctgh(x)

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x

В выражениях можно применять следующие операции: Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание
Другие функции: floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) ceiling(x) Функция - округление x в большую сторону (пример ceiling(4.5)==5.0) sign(x) Функция - Знак x erf(x) Функция ошибок (или интеграл вероятности) laplace(x) Функция Лапласа

Дробь называется правильной , если старшая степень числителя меньше старшей степени знаменателя. Интеграл правильной рациональной дроби имеет вид:

$$ \int \frac{mx+n}{ax^2+bx+c}dx $$

Формула на интегрирование рациональных дробей зависит от корней многочлена в знаменателе. Если многочлен $ ax^2+bx+c $ имеет:

  1. Только комплексные корни, то из него необходимо выделить полный квадрат: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{mx+n}{x^2 \pm a^2} $$
  2. Различные действительные корни $ x_1 $ и $ x_2 $, то нужно выполнить разложение интеграла и найти неопределенные коэффициенты $ A $ и $ B $: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{x-x_1} dx + \int \frac{B}{x-x_2} dx $$
  3. Один кратный корень $ x_1 $, то выполняем разложение интеграла и находим неопределенные коэффициенты $ A $ и $ B $ для такой формулы: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{(x-x_1)^2}dx + \int \frac{B}{x-x_1} dx $$

Если дробь является неправильной , то есть старшая степень в числителе больше либо равна старшей степени знаменателя, то сначала её нужно привести к правильному виду путём деления многочлена из числителя на многочлен из знаменателя. В данном случае формула интегрирования рациональной дроби имеет вид:

$$ \int \frac{P(x)}{ax^2+bx+c}dx = \int Q(x) dx + \int \frac{mx+n}{ax^2+bx+c}dx $$

Примеры решений

Пример 1
Найти интеграл рациональной дроби: $$ \int \frac{dx}{x^2-10x+16} $$
Решение

Дробь является правильной и многочлен имеет только комплексные корни. Поэтому выделим полный квадрат:

$$ \int \frac{dx}{x^2-10x+16} = \int \frac{dx}{x^2-2\cdot 5 x+ 5^2 - 9} = $$

Сворачиваем полный квадрат и подводим под знак дифференциала $ x-5 $:

$$ = \int \frac{dx}{(x-5)^2 - 9} = \int \frac{d(x-5)}{(x-5)^2-9} = $$

Пользуясь таблицей интегралов получаем:

$$ = \frac{1}{2 \cdot 3} \ln \bigg | \frac{x-5 - 3}{x-5 + 3} \bigg | + C = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \frac{dx}{x^2-10x+16} = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$
Пример 2
Выполнить интегрирование рациональных дробей: $$ \int \frac{x+2}{x^2+5x-6} dx $$
Решение

Решим квадратное уравнение: $$ x^2+5x-6 = 0 $$

$$ x_{12} = \frac{-5\pm \sqrt{25-4\cdot 1 \cdot (-6)}}{2} = \frac{-5 \pm 7}{2} $$

Записываем корни:

$$ x_1 = \frac{-5-7}{2} = -6; x_2 = \frac{-5+7}{2} = 1 $$

С учётом полученных корней, преобразуем интеграл:

$$ \int \frac{x+2}{x^2+5x-6} dx = \int \frac{x+2}{(x-1)(x+6)} dx = $$

Выполняем разложение рациональной дроби:

$$ \frac{x+2}{(x-1)(x+6)} = \frac{A}{x-1} + \frac{B}{x+6} = \frac{A(x-6)+B(x-1)}{(x-1)(x+6)} $$

Приравниваем числители и находим коэффициенты $ A $ и $ B $:

$$ A(x+6)+B(x-1)=x+2 $$

$$ Ax + 6A + Bx - B = x + 2 $$

$$ \begin{cases} A + B = 1 \\ 6A - B = 2 \end{cases} $$

$$ \begin{cases} A = \frac{3}{7} \\ B = \frac{4}{7} \end{cases} $$

Подставляем в интеграл найденные коэффициенты и решаем его:

$$ \int \frac{x+2}{(x-1)(x+6)}dx = \int \frac{\frac{3}{7}}{x-1} dx + \int \frac{\frac{4}{7}}{x+6} dx = $$

$$ = \frac{3}{7} \int \frac{dx}{x-1} + \frac{4}{7} \int \frac{dx}{x+6} = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Ответ
$$ \int \frac{x+2}{x^2+5x-6} dx = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Приводится вывод формул для вычисления интегралов от простейших, элементарных, дробей четырех типов. Более сложные интегралы, от дробей четвертого типа, вычисляются с помощью формулы приведения. Рассмотрен пример интегрирования дроби четвертого типа.

Содержание

См. также: Таблица неопределенных интегралов
Методы вычисления неопределенных интегралов

Как известно, любую рациональную функцию от некоторой переменной x можно разложить на многочлен и простейшие, элементарные, дроби. Имеется четыре типа простейших дробей:
1) ;
2) ;
3) ;
4) .
Здесь a, A, B, b, c - действительные числа. Уравнение x 2 + bx + c = 0 не имеет действительных корней.

Интегрирование дробей первых двух типов

Интегрирование первых двух дробей выполняется с помощью следующих формул из таблицы интегралов :
,
, n ≠ - 1 .

1. Интегрирование дроби первого типа

Дробь первого типа подстановкой t = x - a приводится к табличному интегралу:
.

2. Интегрирование дроби второго типа

Дробь второго типа приводится к табличному интегралу той же подстановкой t = x - a :

.

3. Интегрирование дроби третьего типа

Рассмотрим интеграл от дроби третьего типа:
.
Будем вычислять его в два приема.

3.1. Шаг 1. Выделим в числителе производную знаменателя

Выделим в числителе дроби производную от знаменателя. Обозначим: u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
;
.
Но
.
Мы опустили знак модуля, поскольку .

Тогда:
,
где
.

3.2. Шаг 2. Вычисляем интеграл с A = 0, B=1

Теперь вычисляем оставшийся интеграл:
.

Приводим знаменатель дроби к сумме квадратов:
,
где .
Мы считаем, что уравнение x 2 + bx + c = 0 не имеет корней. Поэтому .

Сделаем подстановку
,
.
.

Итак,
.

Тем самым мы нашли интеграл от дроби третьего типа:

,
где .

4. Интегрирование дроби четвертого типа

И наконец, рассмотрим интеграл от дроби четвертого типа:
.
Вычисляем его в три приема.

4.1) Выделяем в числителе производную знаменателя:
.

4.2) Вычисляем интеграл
.

4.3) Вычисляем интегралы
,
используя формулу приведения:
.

4.1. Шаг 1. Выделение в числителе производной знаменателя

Выделим в числителе производную знаменателя, как мы это делали в . Обозначим u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
.

.
Но
.

Окончательно имеем:
.

4.2. Шаг 2. Вычисление интеграла с n = 1

Вычисляем интеграл
.
Его вычисление изложено в .

4.3. Шаг 3. Вывод формулы приведения

Теперь рассмотрим интеграл
.

Приводим квадратный трехчлен к сумме квадратов:
.
Здесь .
Делаем подстановку.
.
.

Выполняем преобразования и интегрируем по частям.




.

Умножим на 2(n - 1) :
.
Возвращаемся к x и I n .
,
;
;
.

Итак, для I n мы получили формулу приведения:
.
Последовательно применяя эту формулу, мы сведем интеграл I n к I 1 .

Пример

Вычислить интеграл

1. Выделим в числителе производную знаменателя.
;
;


.
Здесь
.

2. Вычисляем интеграл от самой простой дроби.

.

3. Применяем формулу приведения:

для интеграла .
В нашем случае b = 1 , c = 1 , 4 c - b 2 = 3 . Выписываем эту формулу для n = 2 и n = 3 :
;
.
Отсюда

.

Окончательно имеем:

.
Находим коэффициент при .
.

См. также: