От чего зависит амплитуда затухающих колебаний. Затухающие колебания. Уравнения движения шара в этом случае имеют вид

В 2014 Александр Андреев несколько изменил схему резонансного трансформатора, описанную Громовым Н.Н. в 2006 г., но энергия резонансного трансформатора по прежнему снижает расходы на электрическую энергию в 10 раз.

Это происходит от резонанса, получаемого во вторичной обмотке трансформатора. При потреблении от сети всего 200 Ватт на нагрузку мы можем отдавать до 5 кВт.

Я взял сердечник от французского инвертора 1978 года. Но искать надо сердечник с минимальным содержанием марганца и никеля, а кремний должен быть в пределах 3%. Тогда халявы много будет. Авто-резонанс получится. (Авто-резонанс впервые описан в 30-е годы советскими физиками А.А. Андроновым, А.А. Виттом и С.Э. Хайкиным. Это резонанс (колебания с наивысшей амплитудой), существующий за счет факторов, порождаемых им самим.) Трансформатор может самостоятельно заработать. Раньше были такие пластины Ш-образные на которых как-будто кристаллы нарисованы. А сейчас появились мягкие пластины, они не хрупкие, не ломаются. Вот такая старая хрупкая трансформаторная сталь для резонансного трансформатора самая оптимальная, современная не годится. Кремний резко повышает удельное электрическое сопротивление. В результате этого в электротехнической стали резко снижаются потери мощности от вихревых токов. Вместе с тем введение кремния снижает потери на гистерезис и увеличивает магнитную проницаемость в слабых и средних полях. (см Электротехническая сталь

https:// electrono.ru/ magnitnye-materialy/ elektrotexnicheskaya-stal)

Электрическая схема соединений представлена ниже.

Работа этого трансформатора связана с обычной электросетью. Пока я не собираюсь делать самозапитку, но это возможно сделать, надо вокруг него сделать такой же силовой трансформатор, один токовый трансформатор и один магнитный реактор. Все это обвязать и будет самозапитка.. Другой вариант самозапитки - это намотать 12 вольтную съемную вторичную катушку Тр2 на втором трансформаторе, далее использовать компьютерный ИБП, которого передать 220 Вольт уже на вход

Самое главное сейчас - это просто есть сеть, которая подается на схему, а я просто увеличиваю энергию за счет резонанса и питаю отопительный котел в доме. Это индуктивный котел, который называется ВИН. Мощность котла 5 кВт. Целый год этот котел проработал с моим умным трансформатором. За сеть я плачу как за 200 Вт.

Трансформатор может быть любым (на тороидном или П-образном сердечнике). Просто надо пластины трансформатора хорошо изолировать, покрасить, чтобы токов Фуко в нем было как можно меньше, т.е. чтоб сердечник при работе не грелся вообще.

Просто резонанс дает реактивную энергию, а переводя реактивную энергию в любой элемент потребления она становится активной. Счетчик до трансформатора при этом почти не крутится..

Для поиска резонанса я использую прибор ЕСН-15 еще советского исполнения. С ним я легко добиваюсь резонанса в любом трансформаторе.

Итак, за суровый зимний месяц я заплатил 450 рублей.

С первого трансформатора с тороидальным сердечником на 1 кВт я имею во вторичке 28 ампер и 150 вольт. Но нужна обратная связь через токовый трансформатор. Мотаем катушки: Сделать каркас. Когда первичную намотал по всему периметру в два слоя (проводом с диаметром 2,2 мм c учетом 0,9 витка на 1 вольт, т.е. на 220 Вольт в первичной обмотке получается 0,9 витков/В х 220 В = 200 витков), то магнитный экран положил (из меди или латуни), когда вторичную намотал (проводом с диаметром 3 мм с учетом 0,9 витка на 1 Вольт), то снова магнитный экран положил. На вторичной обмотке первого транса, начиная с середины, т.е. с 75 Вольт, я сделал множество выводов петлей (около 60-80 штук, кто сколько сможет, примерно 2 Вольта на вывод). На всей вторичной обмотке первого трансформатора нужно получить 150 - 170 Вольт. Для 1 кВт я выбрал емкость конденсатора 285 мкФ (тип используемых пусковых конденсаторов для эл. двигателя на рисунке ниже), т.е. два конденсатора. Если использовать 5 кВт трансформатор, то я буду использовать 3 таких конденсатора (неполярный для переменного тока 100 мкФ 450 Вольт). Проявление не полярности у такого конденсатора незначительное, чем меньше диаметр и короче баночка, тем лучше не полярность. Лучше выбирать более короткие конденсаторы, побольше количествоv, но меньшей емкости. При этом я нашел резонанс где-то на середине выводов вторичной обмотки. В идеале для резонанса замеряете индуктивное сопротивление и емкостное сопротивление контура, они должно быть равны, как по формуле. Вы по звуку услышите как трансформатор начнет сильно гудеть. Синусоида резонанса на осциллографе должна быть идеальной. Но я резонанс по слуху определяю, транс начинает сильно гудеть. Существуют разные частотные гармоники резонанса, но при 50 Гц трансформатор гудит в два раза громче, чем при 150 Гц. Из электротехнического инструмента я использовал токовые клещи, которые меряют частоту. Резонанс во "вторичке" вызывает резкое понижение тока в первичной обмотке, который составил 120-130 мА. Чтобы не было к вам претензий от сетевой компании, то параллельно первичной обмотке первого трансформатора устанавливаем конденсатор и доводим cos Ф = 1 (по токовым клещам). Напряжение я проверял уже на первичной обмотке Второго трансформатора. Это у первого трансформатора. Таким образом, в этом контуре (вторичная обмотка первого трансформатора - первичная обмотка второго трансформатора) у меня протекает ток 28 Ампер. 28А х 200В = 5,6 кВт. Эту энергию я снимаю с вторичной обмотки Второго трансформатора (провод сечением 2,2 мм) и передаю на нагрузку, т.е. в электро-котел. На 3 кВт диаметр провода вторичной обмотки второго трансформатора составляет 3 мм

Если хотите получить на нагрузке выходную мощность не 1,5 кВт, а 2 кВт, то сердечник первого и второго трансформатора (см габаритный расчет мощности сердечника) должны быть на 5 кВт

А у второго трансформатора, сердечник которого надо также перебрать, покрасить балонной краской каждую пластину, заусенцы убрать, тальком посыпать, чтобы пластины не прилипали друг к другу) надо сначала экран положить потом первичку намотать, потом на "первичку" второго трансформатора снова экран положить. Между "вторичкой" и "первичкой" все-равно должен быть магнитный экран. Если мы получили напряжение в резонансном контуре 220 или 300 Вольт, то "первичку" второго трансформатора нужно рассчитать и мотать также на эти же 220 или 300 вольт. Если по расчету 0,9 витка на вольт,то количество витков будет соответственно на 220 или 300 Вольт. Возле электро-котла (в моем случае это индукционный котел ВИМ 1,5 кВт) я ставлю конденсатор, ввожу этот контур потребления в резонанс, то смотрю по току или по COS Ф, чтобы COS Ф был равен 1. Тем самым мощность потребления уменьшается и контур, где у меня крутится мошность 5,6 кВт, разгружаю. Я катушки мотал как в обычом трансформаторе — одна над другой. Конденсатор 278 мкФ. Конденсаторы я беру стартерные или сдвигающие, чтобы они на переменном токе хорошо работали. Резонансный трансформатор от Александра Андреева дает прибавку 1 к 20

Первичную обмотку рассчитываем как обычный трансформатор. Когда собрали, то если ток там появится в пределах 1 - 2 Ампер, то лучше разобрать сердечник трансформатора, посмотреть где образуются токи Фуко и снова собрать сердечник (может где-то что-нибудь не до красили или заусенец торчит. Оставьте трансформатор на 1 час в рабочем состоянии, затем пощупайте пальцами там где нагрелось или пирометром замерили в каком углу греется) Первичную обмотку надо мотать, чтобы она потребляла 150 - 200 мА в холостую.

Цепь обратной связи от вторичной обмотки второго трансформатора к первичной обмотке первичного транформатора необходима для автоматичекой регулировки нагрузки, чтобы резонанс не срывался. Для этого в цепи нагрузки я разместил токовый трансформатор (первичка 20 витков, вторичка 60 витков и там несколько отводов сделал, далее через резистор, через диодный мост и на трансформаор в линию подающую напряжение к первому трансформаору (200 витков / на 60-70 витков)

Схема эта есть во всех древних учебниках по электротехнике. Она работает в плазматронах, в усилителях мощности, она в приемнике гама V работает. Температура обеих трансформаторов в работе около 80 С. Переменный резистор - это керамический резистор 120 Ом и 150 Вт, можно реостат школьный нихромовый с ползунком туда поставить. Он тоже нагревается до 60-80 С,поскольку ток через него проходит хороший =около 4 Ампер

Смета для изготовления Умного трансформатора для отопления дома или дачи

Трансформаторы Тр1 и Тр2 = по 5 000 рублей каждый причем Тр1 и Тр2 трансформатор можно купить в магазине. Он называется медицинский трансформатор. У него первичная обмотка уже заизолирована магнитным экраном от вторичной. https:// omdk.ru/ skachat_prays

Трансформатор тока Тр3 и подстроечный Тр4 = 500 рублей каждый

Диодный мост Д - 50 рублей

Подстроечный резистор R 150 Вт - 150 рублей

Конденсаторы C - 500 рублей

https:// www.youtube.com/ watch?v=GvaoaKj1xuE

https:// www.youtube.com /watch?v=snqgHaTaXVw

https:/ /www.youtube.com/ watch?v=Uu2Rbjr80RI Мастер-класс по резонансному трансформатору с Александром Андреевым (ч 2)

Цыкин Г.С. - Трансформаторы низкой частоты https:// www.sergey-osetrov.narod2.ru/ Resonant/ Transformer_with_low_frequency_M_1955.djvu

Еще одно описание схемы резонансного трансформатора Александра Андреева

На форуме https:// cyberenergy.ru/ resonance / generator-aleksandra-t998-40.html приведена схема, которая позволяет включать в нагрузку устройства большей мощности, чем мощность потребленная самим устройством.

Устройство работает на трансформаторах на резонансе, но без резких обрывов напряжения - без фронтов. Обмотка W1 является задающим звеном при перемагничивании сердечника. Эту обмотку надо мотать из расчета, чтобы при включении она потребляла 150мА в холостую (для 3х-киловаттного входного трансфоматора Т1). Обмотка W2 наматывается так, чтобы начиная с её середины, выводилось множество выводов - около 60-80 выводов - кто сколько сможет сделать, примерно 2 вольта на 1 вывод. Катушка должна соответствовать 150-160-180В. При настройке резонанса конденсатор С1 переключаем по выводам обмотки W2, Резонанс контура W2-C1 можно находить сразу после включения в сеть. При резонансе напряжение на W2 и С1 достигает 400В. Обмотку W3 надо мотать из расчёта 300В, потому что она будет понижать напряжение, чуть ли не до 220В, её лучше тоже делать с лишними выводами на случай проседания напряжения.

Трансформатор Т2 - это силовой, съемный трансформатор Контур W2-W3-C1 хорошо заэкранирован и обеспечивает хорошую развязку питания и потребления. Нижняя часть схемы - это обратная связь для того чтобы регулировать - сравнивать нагрузку со входом, чтобы резонанс не срывался. Конденсатором С2 регулируется косинус фи cosφ=1, чтобы претензий сетевой компании не было. Используемые детали Сердечники Для трансформаторов подходят как Ш-образные сердечники, так и тороидальные. В Ш-образных можно хорошо экранировать обмотки, а в тороидальных это сложно. Материал сердечника должен быть простой - железо. Высокочастотные материалы при 50 герцах неуместны. Чтобы добиться потребления 150мА в холостую, надо аккуратно собирать сердечник, снимать все заусенцы с пластин, подкрасить, если он старенький. Проверить тестером замыкают ли пластины. Чтобы не мучиться с этими пластинами, можно взять тачильный диск и поновой их задравить - снять все заусенцы и покрасить заново автомобильной краской из балончика, посыпать тальком, чтобы они не залипали друг к другу. Полезно использовать текстолитовые шайбы вместо металлических. Если сердечник будет плохой, он будет греться из-за токов Фуко, резонанс буде слабый и схема будет неэффективна

Трансформатор Т1 . Первичная обмотка W1 трансформатора Т1 мотается из расчета 0.9 витка на 1В для напрядения сети 220В, используется проволока диаметром 2.2мм. . Вторичная обмотка W2 сделана из проволоки диаметром 3мм тоже 0.9 витка на вольт. Где-то начиная с середины обмотки и до её конца, каждые 2 вольта надо делать выводы. . Сердечник. Надо аккуратно собирать сердечник, снимать все заусенцы с пластин, подкрасить, если он старенький. Проверить тестером замыкают ли пластины. Чтобы не мучиться с этими пластинами, можно взять тачильный диск и поновой их задравить - снять все заусенцы и покрасить заново автомобильной краской из балончика, посыпать тальком, чтобы они не залипали друг к другу. У трансформатора Т1 надо заэкранировать вторичную обмотку, а у Т2 - первичную.

У трансформатора Т1 надо заэкранировать вторичную обмотку, а у Т2 - первичную.

Обмотка W1 является задающим звеном при перемагничивании сердечника. Эту обмотку надо желательно домотать из расчета, чтобы при включении она потребляла 150мА в холостую (для 3х-киловаттного входного трансфоматора Т1). Чтобы добиться потребления 150мА в холостую, надо аккуратно собирать сердечник. В первом эксперименте автора, ему пришлось домотать 35 витков и коэффициент 0,9 витка/вольт изменился в большую сторону. При первоначальном количестве витков ток на холостом ходу был 400мА, а после домотки 35 витков - 150 мА. Соответственно, отнеситесь к остальным обмоткам схемы внимательно и проследите за ними с точки зрения своей логики.

Обмотка W2 наматывается так, чтобы начиная с её середины, выводилось множество выводов - около 60-80 выводов - кто сколько сможет сделать, примерно 2 вольта на 1 вывод. Катушка должна соответствовать 150-160-180В, при желании можно добавлять на всякий случай. При резонансе напряжение на W2 подскочит выше 220В, но это не значит, что W2 должна мотаться не на 180 Вольт, т.к. резонанс будет именно на этих витках, т.е. лишние витки не нужны.

Трансформатор Т2

Первичная обмотка W3. Первичная обмотка W3 сделана из проволоки диаметром 2.2мм тоже 0.9 витка на вольт. Обмотка W3 мотается из расчёта напряжения, которое реально присутсвует в резонансе. При резонансе фактическое напряжение на W2 превышает обычное и выходит не только за пределы 170В, но и за 220В. Если при настройке резонанса в замкнутом контуре W2-С1 будет 400В, то W3 надо мотать из расчёта 300В, потому что она будет понижать напряжение, чуть ли не до 220В, её лучше тоже делать с лишнеими выводами на случай проседания напряжения. Напоминание: W2 должна мотаться не на 180В, т.к. резонанс будет именно на этих витках, зато первичка W3 трансформатора Т2 должна мотаться для фактического напряжения при резонансе, т.е. в ней будет значительно больше витков, чем во вторичке W2.

Вторичную обмотку W4 трансформатора Т2 можно мотать когда схема из W1, W2 и W3 будет настроена. Тогда, намотав 10 витков, можно замерить напряжение и узнать сколько нужно витков, чтобы получить 220В. Для нагрузки 2кВт можно использовать провод диаметром 2.2мм.

Сердечник трансформатора Т2 надо обрабатывать также как трансформатора Т1, чтобы токи Фуко были минимальны. У трансформатора Т1 надо заэкранировать вторичную обмотку, а у Т2 - первичную.

Демонстрация трансформатора Т1/Т2 на 14м40с видео, размещенного в начале статьи.

Трансформатор Т2 имеет больше витков, чем трансформатор Т1.

Если необходимо снимать на выходе 2 кВт, то трансформатор Т1 и трансформатор Т2 должны быть мощностью по 5 кВт.

Трансформатор Т3

Трансформатор Т3 - это токовый трансформатор.

В первичной обмотке W5 примерно 20 витков

Во вторичной W6 примерно 60 витков и есть несколько отводов, чтобы не перегрузилась цепь с резистором и диодами.

Трансформатор Т4

В первичной обмотке W7 200 витков

Во вторичной W8 примерно 60-70 витков.

С каждой катушки трансформаторов Т3 и Т4 лучше сделать по 20 выводов для настройки.

Конденсаторы

Конденсаторы должны быть не полярным электролитом, а неполярными полимерными, а лучше их набором - это могут быть стартерные конденсаторы для переменного тока. Конденсаторы надо проверить что они не полярные - это можно сделать на осциллографе, это делается так: один провод от ноги конденсатора втыкают в осциллограф, а другой провод от другой ноги берут за руку и на осциллографе смотрят наводку переменного тока - какая амплитуды, затем концы конденсатора меняют местами и опять смотрят амплитуду. По разнице амплитуд оценивают полярность конденсатора. Должна получаться симметричность с отклонением не более 5%. Надо брать конденсаторы поменьше и покороче.

Конденсатор С1

Ёмкость С1 - 285мкФ.

Можно взять конденсаторы по 1мкФ и соединить их в блоки в геометрической прогрессии (удвоение), например, 1мкФ, 2мкФ, 4мкФ, 8мкф, 16мкФ, 32мкФ, 64мкФ, 128мкФ. Тогда можно будет сделать систему из них и выключателей (хороших кнопочных выключателей), которая будет включать и отключать эти блоки и за счёт этого можно будет получить любое значение ёмкости с точностью до 1мкФ. Например, 185мкФ будет состоять из блоков 128+32+16+8+1. Имея такой магазин конденсаторов можно сэкономить на количестве выводов с обмотки W2, т.к. резонанс всё-таки можно будет подобрать. Причём резонанс будет лучше, если индуктивное сопротивление будет равно емкостному сопротивлению. Их можно вычислить по формуле или измерить и если они не равны, то надо их равнять. Конденсатор С1 для трансформатора на 3кВт составляет 285мкФ. Можно использовать конденсатор меньшей емкости, например 185 мкФ, но тогда напряжение на вторичке W2 придется увеличивать и мотать больше витков, а тогда примется мотать больше витков на первичке W3 трансформатора Т2.

Конденсатор С2

Конденсатор С2 зависит от того сколько реактивной энергии выделяется назад (примерно 40-50мкФ). Он нужен, чтобы сделать косинус напряжения на W1 и С2 и тока I1 равным единице. Косинус замеряется специальными клещами, которые надеваются вокруг провода с током I1 и подсоединяются клеммами к W1.

Конденсатор С3

Конденсаторы С2 и С3 снимают гармоники.

Резистор R1

Резистор R1 120 Ом, 150Вт - керамический резистор. Можно поставить проволочный нихромовый переменный резистор. Ток до 4А, нагревается до 60-80 градусов.

В качестве нагрузки используется индукционный отопительный котёл Вин на 1.5кВт.

Сборка и настройка

Сборка трансформаторов

Используются обычные медные лакированные провода (с лакокрасочной изоляцией). В случае тороидального трансформатора Т1 Сначала мотается первичка, затем фольга, вторичка и опять фольга. Причем, вторичка наматывается не на 360 градусов тора, а оставляется промежуток, чтобы в этом месте фольгу разных слоёв можно было сблизить между собой (контакта не происходит - используется изоляция). Если витки не умещаются в один слой, то надо пропускать этот свободный сектор и продолжать мотать второй слой за ним.

Настройка первого трансформатора, настройка временного контура W2-C1 Первоначально настройку резонанса на трансформаторе Т1 выполням по схеме:

конденсатор переключаем по выводам обмотки W2, при этом при токе I12 28-30А при резонансе будет резкое понижение тока I11 и он останется в пределах 120-130мА. Т.е. Подключать нагрузку не нужно, должен оставаться чистый LC-контур. Когда будет резонанс, трансформатор начнёт нехорошо гудеть. Добавляя емкости по 1 мкФ в С1, напряжение на катушке W3 будет расти, но если после этого оно начнет падать с добавлением кондесаторов в С1, то это значит, что мы перешли резонанс - надо снова убирать ёмкости.

Затем подключаем трансформатор Т2 - это силовой, съемный трансформатор. Возможно у вас ещё не намотана вторичная обмотка W4 транстформатора Т2. Резонанс можно находить сразу после включения в сеть. Пока нет нагрузки резонанс нормально держится продолжительное время. После разогрева трансформатора (через 20-30 минут) можно еще раз произвести настройку, побегав конденсатором C1 по выводам катушки W2. При резонансе напряжение на W2 и С1 достигает 400В. Продолжение по настройке резонанса продолжено ниже в описании конденсатора С1.

Имея магазин конденсаторов, описанный выше (1+2+4+...), можно сэкономить на количестве выводов с обмотки W2, т.к. резонанс всё-таки можно будет подобрать. Причём резонанс будет лучше, если индуктивное сопротивление будет равно емкостному сопротивлению. Их можно вычислить по формуле или измерить и если они не равны, то надо их равнять. Если резонанс будет не хороший, то на выходе W2 будет синусоида хуже, чем на входе W1, а она (на W2) должна быть идеальной. Это можно сделать на слух. Чем лучше гудит трансформатор - тем лучше резонанс. При резонансе трансформатор должен гудеть громче всего и гул должен быть на частоте 50Гц, т.е. самый низкочастотный. Если резонанс будет на частоте 150 Гц, а не 50Гц, то ток I1 - потребления из сети (к катушке W1) будет выше. При самом правильном резонансе ток I1 минимален. После того как найден резонанс на выводах катушки W2, можно подстраивать ёмкость С1.

Режим работы под нагрузкой

Катушка W2 отсоединена от магнитной связи с W1 за счет того, что она находится в экране. Также катушка W3 отсоединена от W4, за счёт этого контур W2-W3-C1 начинает хорошо работать - разгружается и таким образом тоже. Тогда этот контур хорошо держит резонанс - не срывается. Резонанс трансформатора Т1 проверятся после включения так: если обмотра W1 греется больше чем сердечник, то всё парвильно - резонанс есть, а если сердечник греется больше обмотки, то трансформатор собрали неправильно. Место в сердечнике, которое начинает разогреваться сильнее легко найти, если есть пирометр - это может быть зона болтов или др там и ошибка в сборке.

В контуре W2-W3-C1 вращается ток 28А. На обмотке W4 измерения показыват напряжение 220В.

При резонансе 3кВт-сердечник трансформатора Т1 нагревается до 80-90 градусов. Трансформатор Т2 тоже греется в пределах 80 градусов Если мощность контура W2-W3-C1 - 5кВт, то на выходе L1 можно снять мощность только 1.5-2кВт, потому что контур начинает срываться из-за нагрева сердечника. Т.е. если необходимо снимать на выходе 2 кВт, то трансформатор Т1 и трансформатор Т2 должны быть мощностью по 5 кВт.

Напряжения

W1 - 210-230В - то что поступает из электросети.

W2 - в резонансе короткого контура 400В.

W3 - в резонансе 230В.

W4 завышено - 240-250В, чтобы отопитель лучше грел.

Настройка конденсатора С3

На выходе в качестве потребления использован индукционный нагреватель на 1.5кВт - L1. Добавляя ёмкость С3 вводим в резонанс в минимуме тока W4-L1 или косинус фи должен быть 1 (если настраивать по косинусу, то токовые клещи подключаются на выводы L1, а сами надеваются на проводник W4-L1) - тогда мощность потребления уменьшается и контур W2-W3-C1 разгружается.

Настройка Конденсатора С2

Конденсатором С2 регулируется косинус фи cosφ=1, чтобы претензий сетевой компании не было. Конденсатор С2 зависит от того сколько реактивной энергии выделяется назад (примерно 40-50мкФ). Он нужен, чтобы сделать косинус напряжения на W1 и С2 и тока I1 равным единице. Косинус замеряется специальными клещами, которые надеваются вокруг провода с током I1 и подсоединяются клеммами к W1.< https://www.sergey-osetrov.narod.ru/2-2-3.gif

Нижняя часть схемы

Нижняя часть схемы (Т3 ⇐=⇒ Т4) - это обратная связь для того, чтобы регулировать - сравнивать нагрузку со входом, чтобы резонанс не срывался.

Авторегулировка поисходит примерно следующим образом: при нагреве, если ток в W5 уменьшается, то в W6 уменьшается, в W7 уменьшается и в W8 напряжение уменьшается, причем, возможно в схеме перепутано подключение трансформатора Т4 и его надо подключать с противоположной полярностью, чтобы напряжение производило обратный эффект. С каждой катушки трансформаторов Т3 и Т4 лучше сделать по 20 выводов для настройки.

Характеристики устройства

Потребление устройства без нагрузки 200мА, а с нагрузкой 350мА. Нагрузка 1.5кВт. Необходимо несколько раз в день подстраивать резонанс. Сердечники трансформаторов Т1 и Т2 и резистор R1 нагреваются до 70-90 градусов

Умный упрощенный трансформатор Андреева на Ш-образном сердечнике или как сделать генератор электроэнергии из дросселя

Это принцип дросселя и трансформатора в одном лице, но он настолько простой, что никто еще не догадался его использовать. Если взять Ш-образный сердечник 3х фазного трансформатора, то Функциональная схема генератора получения дополнительной энергии будет как на рисунке ниже

В этом генераторе электроэнергии совмещен принцип дросселя и трансформатора в одном лице, но он настолько простой, что еще никто не догадался его применить. Чтобы получить больший реактивный ток в резонансном контуре, ты должен трансформатор превратить в дроссель, то есть разорвать сердечник трансформатора полностью.

Всего-навсего нужно первой намотать не входную, как обычно мотают, а выходную обмотку, т.е. ту где забирается энергия.

Вторую мотаем резонансную. При этом диаметр провода должен быть в 3 раза толще, чем силовая

В третий слой мотаем входную обмотку, т.е сетевую.

Это условие для того, чтобы резонанс между обмотками гулял.

А чтобы не было тока в первичной обмотке, то трансформатор превращаем в дроссель. Т.е. Ш-образки с одной стороны собираем, а ламельки (пластиночки) с другой стороны собираем. И там выставляем зазор. Зазор должен быть по мощности трансформатора. Если 1 кВт, то ему 5 А в первичной обмотке. Делаем зазор так, чтобы в первичной обмотке было 5А холостого хода без нагрузки. Этого нужно добиться зазором. Потом, когда делаем резонанс ток падает до "0" и тогда уже будешь постепенно нагрузку подключать, подключать и смотреть разницу входа мощности и выхода мощности и тогда халява получится. Я 1-фазным 30кВт-ым трансформатором добился соотношения 1:6 (в пересчете на мощность 5А - на входе и 30А - на выходе)

Только надо постепенно набирать мощность, чтобы не перепрыгнуть барьер халавщины. Т.е. как и в первом случае (с двумя трансформаторами) резонанс существует до определенной мощности нагрузки (меньше можно, но больше нельзя) Этот барьер нужно подбирать вручную. Можно подключать любую нагрузку (активную, индуктивную, насос, пылесос, телевизор, компьютер...) По нагрузке надо так согласовать, чтобы не было перебора этой мощности. Когда перебор мощности будет, тогда резонанс уходит, тогда резонанс перестает работать в режиме накачки энергии.

По конструкции

Я взял Ш-образный сердечник от французского инвертора 1978 года. Но искать надо сердечник с минимальным содержанием марганца и никеля, а кремний должен быть в пределах 3%. Тогда халявы много будет. Авторезонанс получится. Трансформатор может самостоятельно заработать. Раньше были такие пластины Ш-образные на которых как-будто кристаллы нарисованы. А сейчас появились мягкие пластины, они не хрупкие, в отличие от старого железа, а мягкие и не ломаются. Вот такое старое железо для трансформатора самое оптимальное.

Если делать на торе, то тор нужно в двух местах распиливать, чтобы потом стяжку сделать. Шлифовать распиленный зазор нужно очень хорошо

На Ш-образном 30кВт-ном трансформаторе у меня получился зазор 6 мм, если 1 кВт-ный - то зазор будет где-то 0,8-1,2 мм. В качестве прокладки картон не подойдет. Магнитострикция его раздолбает. Лучше брать стеклотекстолит

Первой мотается обмотка, которая идет на нагрузку, она и все остальные мотаются на центральном стержне Ш-образного трансформатора. Все обмотки мотаются в одну сторону

Подбор конденсаторов для резонансной обмотки лучше делать магазином конденсаторов. Ничего там сложного нет. Нужно добиться того, чтобы железо начало хорошо рычать, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтобы железо между ними работало хорошо. Железо должно работать и накачивать энергию, сам по себе резонанс не качает, а железо является стратегическим устройством в этом устройстве.

В моей резонансной обмотке было 400 Вольт. Но чем больше - тем лучше. По поводу резонанса - нужно соблюдение реактивных сопротивлений между индуктивностью и емкостью, чтобы они были равны. Это та точка, где и когда возникает резонанс. Можно еще сопротивление добавить последовательно.

Из сети идет 50 Гц, которые возбуждают резонанс. Происходит увеличение реактивной мощности, далее с помощью зазора на обкладке в съемной катушке мы превращаем реактивную мощность в активную.

В этом случае я просто собирался упростить схему и перейти от 2х трансформаторной или 3х трансформаторной, схемы с обратной связью и дроссельной связью. Вот упростил до такого варианта, который еще и работает. 30 кВт-ный работает, но нагрузку я могу снимать только 20 кВт, т.к. все остальное - для накачки. Если я буду больше энергии забирать из сети, то он и отдавать будет больше, но уменьшаться будет халява.

Следует назвать еще одно неприятное явление, связанное с дросселями, — все дроссели при работе на частоте 50 Гц создают гудящий звук той или иной интенсивности. По уровню производимого шума дроссели делятся на четыре класса: с нормальным, пониженным, очень низким и особо низким уровнем шума (в соответствии с ГОСТ 19680 они маркируются буквами Н, П, С и А).

Шум от сердечника создается магнитострикцией (изменением формы) пластин сердечника, когда магнитное поле проходит через них. Этот шум также известен, как холостой шум, так как он не зависит от нагрузки, подаваемой на дроссель или трансформатор. Шум нагрузки возникает только у трансформаторов, к которым подключается в нагрузка, и он добавляется к холостому шуму (шуму сердечника). Этот шум вызывается электромагнитными силами, связанными с рассеиванием магнитного поля. Источником данного шума являются стенки корпуса, магнитные экраны, и вибрация обмоток. Шумы, вызываемые сердечником и обмотками, находятся, в основном, в полосе частот 100-600 Hz.

Магнитострикция имеет частоту вдвое выше частоты подаваемой нагрузки: при частоте 50 Hz, пластины сердечника вибрируют с частотой 100 раз в секунду. Более того, чем выше плотность магнитного потока, тем выше частота нечетных гармоник. Когда резонансная частота сердечника или корпуса совпадает с частотой возбуждения, то уровень шума увеличивается еще больше

Известно, что если через катушку протекает большой ток, то материал сердечника насыщается. Насыщение сердечника дросселя может привести к увеличению потерь в материале сердечника. При насыщении сердечника его магнитная проницаемость уменьшается, что приводит к уменьшению индуктивности катушки.

В нашем случае сердечник катушки индуктивности выполнен с воздушным диэлектрическим зазором на пути магнитного потока. Сердечник с воздушным зазором позволяет:

Исключить насыщение сердечника, уменьшить в сердечнике потери мощности, увеличить ток в катушке и т.д.

Выбор дросселя и Характеристики сердечника. Магнитные материалы сердечника состоят из очень маленьких магнитных доменов (размерами порядка нескольких молекул). Когда внешнее магнитное поле отсутствует, эти домены ориентированы случайным образом. При появлении внешнего поля домены стремятся выравняться по его силовым линиям. При этом происходит поглощение части энергии поля. Чем сильнее внешнее поле, тем больше доменов полностью выравниваются по нему. Когда все домены окажутся ориентированы по силовым линиям поля, дальнейшее увеличение магнитной индукции не будет влиять на характеристики материала, т. е. будет достигнуто насыщение. По мере того как напряжённость внешнего магнитного поля начинает снижаться, домены стремятся вернуться в первоначальное (хаотичное) положение. Однако некоторые домены сохраняют упорядоченность, а часть поглощённой энергии, вместо того чтобы вернуться во внешнее поле, преобразуется в тепло. Это свойство называется гистерезисом. Потери на гистерезис являются магнитным эквивалентом диэлектрических потерь. Оба вида потерь происходят из-за взаимодействия электронов материала с внешним полем. https:// issh.ru/ content/ impulsnye-istochniki-pitanija/ vybor-drosselja/ kharakteristiki-serdechnika/ 217/

Аналитический расчет воздушного зазора в дросселе не очень точен, т.к. данные производителей о стальных магнитных сердечниках неточны (обычно погрешность составляет +/- 10%). Программа схемотехнического моделирования Micro-cap позволяет довольно точно рассчитать все параметры катушек индуктивности и магнитные параметры сердечника https://www.kit-e.ru/ articles/ powerel/ 2009_05_82.php

Влияние воздушного зазора на добротность Q дросселя со стальным сердечником. Если частота напряжения, приложенного к дросселю, не изменяется и с введением воздушного зазора в сердечник амплитуда напряжения увеличивается так, что магнитная индукция поддерживается неизменной, то и потери в сердечнике будут сохраняться такими же. Введение воздушного зазора в сердечник вызывает увеличение магнитного сопротивления сердечника обратнопропорционально m∆ (см формулу 14-8) Следовательно для получения той же магнитной индукции намагничивания ток должен соответственно увеличиваться. Добротность Q дросселя можно определять по уравнению

Для получения наибольшей величины добротности в сердечник дросселя обычно вводят воздушный зазор, увеличивая тем самым ток Im настолько, чтобы выполнялось равенство 14-12. Так как введение воздушного зазора уменьшает индуктивность дросселя, то высокое значение Q достигается обычно за счет снижения индуктивности.

https:// edu.sernam.ru/ book_dpt.php?id=3


Создан 12 авг 2017

Цели

После проведения данного эксперимента Вы сможете рассчитывать резонансную частоту резистивно-индуктивно-емкостной схемы и выполнять измерения в схеме для определения существования условия резонанса в схеме.

Необходимые принадлежности

* Осциллограф

* Цифровой мультиметр

* Макетная панель

* Генератор функций

* Элементы:

одна катушка индуктивности 10 мГн, один конденсатор 0, 22 мкФ, один конденсатор 0, 47 мкФ, один резистор 100 Ом.

ВВОДНАЯ ЧАСТЬ

Резонанс - это такое состояние резистивно-индуктивно-емкостной схемы, когда индуктивное сопротивление и емкостное сопротивление одинаковы. Поскольку эти реактивные сопротивления одинаковы, они полностью компенсируют друг друга. При резонансе имеют место многие специальные эффекты. Например, в силу того, что реактивные

сопротивления полностью гасят друг друга, схема проявляет себя как полностью резистивная.

Вы сможете обнаружить резонансные схемы почти во всех типах электронного оборудования. Они широко используются для выполнения различных задач настройки и фильтрации в электронном оборудовании. В данном эксперименте Вы рассмотрите эффект резонанса как в параллельных, так и в последовательных схемах.

Последовательный резонансный контур

Последовательный резонансный контур представлен на рисунке 22-1. Вспомните, что при наличии резонанса в схеме индуктивное сопротивление и емкостное сопротивление полностью компенсируют друг друга, и сопротивление току оказывает одно лишь активное сопротивление схемы. В такой схеме полное сопротивление попросту равно значению R плюс сопротивление постоянному току катушки. Главной характеристикой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.

Поскольку при резонансе в последовательном резонансном контуре полное сопротивление минимально, ток в контуре возрастает до пиковой величины. Эта большая величина тока при ее умножении на индуктивное сопротивление и на емкостное сопротивление дает очень высокие падения напряжения на катушке индуктивности и на конденсаторе. В действительности падения напряжения на катушке индуктивности и на конденсаторе

в условиях резонанса часто значительно превышают напряжение питания. Эти необычайно высокие при резонансе напряжения называются скачками напряжения при резонансе или резонансными повышениями напряжения.


Рис. 22-1. Параллельный резонансный контур

Параллельный резонансный контур представлен на рисунке 22-2. Конденсатор и катушка индуктивности соединяются параллельно друг с другом, и вся комбинация иногда соединяется последовательно с резистором. Поскольку при резонансе индуктивное сопротивление и емкостное сопротивление полностью компенсируют друг друга, схема обнаруживает очень значительное активное сопротивление. В такой схеме полное сопротивление параллельного индуктивно-емкостного контура возрастает до многих тысяч Ом при резонансе. При частотах, превышающих или лежащих ниже резонансной частоты, полное сопротивление уменьшается.



Рис. 22-2.

Если Вы измерите линейный ток в резисторе, соединенном последовательно с параллельным резонансным контуром, Вы обнаружите, что ток достигает минимума в условиях резонанса. Это происходит вследствие того, что при резонансе полное сопротивление максимально,и,следовательно, это приводит к формированию минимальной величины тока через контур. При изменении частоты в любую сторону от резонансной частоты полное сопротивление контура уменьшается, и линейный ток возрастает.

Полное сопротивление параллельного резонансного контура вычисляется на основании следующей формулы:

В этой формуле: R - сопротивление катушки индуктивности L. Например, если L = 2 мГн, С = 0,05 мкФ и R = 5 Ом, полное сопротивлений Z равно:

Z = 2 х 10^-3 / (0,05 х 10 ^-6)(5) Z = 8000 Ом

Вы можете также использовать такую формулу:

Z = Rw(Q^2 + 1)

где: Rw- это сопротивление обмотки катушки индуктивности и Q = Xl/Rw.

Краткое содержание

Как было указано ранее, в данном эксперименте Вы соберете последовательный резонансный контур и параллельный резонансный контур, а также познакомитесь с некоторыми из упомянутых эффектов. Вы практически рассчитаете резонансную частоту (fг) при заданных значениях индуктивности и емкости. Это осуществляется при помощи следующей формулы:

fr = 1 / 2*3.14(LC)^0.5

ПРОЦЕДУРА

1. Обратитесь к рисунку 22-3. Рассчитайте резонансную частоту при заданных значениях, показанных на рисунке.



Рис. 22-3.

fr=______Гц

2. Прежде чем собирать схему, измерьте сопротивление катушки индуктивности. Это сопротивление оказывает влияние на полное сопротивление схемы.

Активное сопротивление катушки индуктивности = ____ Ом

ПРИМЕЧАНИЕ: Данные, полученные в шагах 3-11, должны заноситься в таблицу на рисунке 22-4, как указано ниже.

3. Вычислите полное сопротивление схемы при резонансе. -апишите Ваш результат.



Рис. 22-4.

5. -ная частоту входного сигнала, определите значения индуктивного и емкостного сопротивления. Используя резонансную частоту, которую Вы рассчитали в шаге 1, вычислите определите значения индуктивного и емкостного сопротивления при резонансе. -апишите Ваши результаты.

6. Теперь вычислите падения напряжения на каждом из компонентов схемы на базе значений, полученных в шаге 5. -апишите Ваши результаты.

7. Соберите схему, показанную на рисунке 22-3. При помощи регулятора амплитуды на генераторе функций сформируйте значение размаха напряжения 4 В.

8. При помощи осциллографа осуществляйте мониторинг (текущий контроль) напряжения на резисторе 1000м. Во время мониторинга напряжения добейтесь максимального значения напряжения настройкой регулятора частоты на генераторе функций. Выполняйте Ваши настройки медленно и позволяйте показаниям мультиметра установиться, прежде чем переходить к каждой новой настройке. ПРИМЕЧАНИЕ: настройка на максимальное значение - процесс очень медленный и утомительный, потратьте однако Ваше время, чтобы получить наиболее точные результаты. Продолжайте настройку до тех пор, пока Вы не получите это максимальное напряжение. В результате Вы получили настройку генератора функций на резонансную частоту схемы. Объясните, почему данная процедура используется для нахождения fr .

9. Выполните повторный контроль, чтобы убедиться, что размах выходного напряжения генератора функций составляет 4 В. Если необходимо, снова отрегулируйте выходное напряжение на это значение и повторите при этом шаг 8.

10.После того, как схема настроена в режим резонанса, измерьте падения напряжения на каждом из компонентов. -апишите их значения.

11.Сделайте разрыв в схеме в том месте, где конденсатор 0,22 мкФ соединяется с катушкой, как

Вы это делали в предыдущем эксперименте. Это позволит Вам включить в схему мультиметр для измерения тока в схеме. Переключите Ваш мультиметр для измерения переменного тока. Установите предел измерения 2 мА. Измерьте ток в схеме и запишите Ваш результат.

12. Теперь сравните Ваши расчетные и измеренные значения. Они должны быть одинаковыми или, по крайней мере, очень близкими. Объясните возможные различия.

13. В процессе измерения тока в последовательном резонансном контуре варьируйте выход генератора функций при помощи регулятора частоты. Поворачивайте ручку медленно против часовой стрелки для уменьшения частоты и замечайте влияние на величину тока. Регулировка частоты должна выполняться настолько медленно, чтобы Вы могли наблюдать за изменениями показания мультиметра, так как требуется несколько секунд, чтобы показания установились после каждого нового изменения частоты.

Далее поворачивайте ручку медленно в направлении по часовой стрелке для увеличения частоты и снова замечайте влияние на величину тока. При изменении частоты выше или ниже резонансной частоты Вы обнаружите значительные вариации тока. Во время наблюдения за этими вариациями определяйте сразу, каким образом частота влияет на ток схемы.

14. Снова соедините катушку и конденсатор 0, 22 мкФ.

15. Присоедините измерительные выводы осциллографа к конденсатору и к катушке индуктивности одновременно. Варьируйте частоту при. помощи регулятора частоты на генераторе функций, чтобы получить минимальный уровень напряжения. Когда будет достигнуто минимально возможное напряжение, схема настроена в резонанс. -аметьте положение указателя, регулятора частоты на генераторе функций. Объясните, что Вы здесь получили;

16. Удалите конденсатор 0, 22 мкФ из макетной панели и на его место установите конденсатор 0, 47 мкФ. Вычислите резонансную частоту этой новой комбинации.

fr=____Гц

При увеличении емкости в схеме до 0,47 мкФ резонансная частота:

_________ увеличивается

_________ уменьшается

17.Снова присоедините измерительные выводы осциллографа к комбинации конденсатора и катушки индуктивности. Варьируйте частоту при помощи регулятора частоты на генераторе функций, чтобы получить минимальный уровень напряжения. Когда будет достигнуто минимальное напряжение, заметьте то направление, в котором Вы повернули регулятор генератора функций. Частота в данном случае выше или ниже, чем раньше? _________ выше

_________ ниже

Соответствует это результатам, которые предсказаны Вами в шаге 16?

18.Соберите параллельный резонансный контур, схема которого представлена на рисунке 22-5.

Аметьте, что два конденсатора включены последовательно и их комбинация соединена параллельно с катушкой индуктивности. Это соединение образует параллельный резонансный контур, в котором два последовательно включенных конденсатора имеют единственное эквивалентное значение емкости. -атем параллельный резонансный контур соединен последовательно с резистором 1 кОм, и вся полученная комбинация подключена к генератору функций.



Рис. 22-5.

19. Вычислите резонансную частоту данной схемы. Индуктивность известна, но Вам требуется вычислить полную емкость схемы (Ст). Вспоминая, что Вы узнали ранее о последовательном включении конденсаторов, вычислите сначала полную емкость схемы. -апишите это значение. После этого вычислите резонансную частоту данной схемы и запишите Ваш результат в предусмотренное поле.

Ст = _______мкФ

fr= _______Гц

20.Используя формулу, приведенную ранее для полного сопротивления параллельного резонансного контура, найдите это полное сопротивление. Используйте значение сопротивления катушки, которое Вы измерили в шаге 2.

Z =_______ Ом

21.Подайте на вход схемы синусоидальный сигнал с частотой 3 кГц. При помощи регулятора амплитуды на генераторе функций сформируйте значение размаха напряжения 4 В.

22.Осуществляйте мониторинг напряжения на резисторе 1 кОм при помощи осциллографа. -атем, варьируя частоту при помощи ручки регулятора частоты на генераторе функций, добейтесь минимального напряжения. Как и раньше, делайте это медленно и шагами. Слегка измените частоту и заметьте новое показание напряжения после того, как оно стабилизируется. Продолжайте настройку вперед и назад, пока Вы не добьетесь такой частоты, при которой напряжение минимально. Вы получили при этом резонансную частоту. -апишите в этот момент величину напряжения, которое Вы измерили на резисторе 1 кОм. Vr=_______В

23. -ная значение величины напряжения на резисторе с известным сопротивлением, Вы можете теперь вычислить величину полного тока схемы, используя закон Ома. Сделайте теперь вычисление и запишите значение величины тока.

способ сделать эти - просто прикоснуться испытательными выводами параллельно катушке индуктивности.

VLc= _______В

25.-ная значение величины напряжения на параллельном резонансном контуре и ток, который Вы нашли вычислением в предыдущем шаге, Вы можете теперь вычислить величину полного сопротивления индуктивно-емкостного контура. Сделайте теперь это вычисление и запишите Ваш результат.

Z=_______Ом

Как это значение соответствует значению, которое Вы нашли в шаге 20?

26.Сложите падение напряжения на резисторе 1 кОм и падение напряжения на параллельном резонансном контуре. Равна ли приблизительно эта сумма величине напряжения источника? Объясните Ваш ответ.

27.Соедините измерительные выводы вашего осциллографа с параллельным контуром, прикасаясь ими к двум выводам катушки индуктивности. Вращайте ручку регулятора частоты на генераторе функций в одну и в другую сторону от резонансной частоты и следите за изменением выходного напряжения. Ручку поворачивайте медленно из полностью выведенного в направлении против часовой стрелки положения в полностью выведенное в направлении по часовой стрелке положения, а затем назад, и так несколько раз, чтобы заметить эффект. Объясните вариации напряжения, которые Вы наблюдаете.

28.Выключите генератор функции, но схему пока не разбирайте.

ОБЗОРНЫЕ ВОПРОСЫ

1. Если конденсаторы 0,22 мкф и 0,47 мкФ подключены параллельно к катушке индуктивности 10 мГн, резонансная частота контура составляет:

2. Резонанс в последовательном контуре обнаруживается по:

а) максимальному току,

б) максимальному полному сопротивлению,

в) минимальному току,

г) нулевому току.

3. При резонансе параллельный резонансный контур ведет себя как:

а) резистор с малым сопротивлением,

б) резистор с большим сопротивлением,

в) катушка индуктивности,

г) конденсатор.

4. Каково полное сопротивление параллельного резонансного контура с L = 5 мГн, С == 0,001 мкФ и R =40м?

г) 1,25 МОм.

5. При резонансе в последовательной резистивно-индуктивно-емкостной схеме полное сопротивление равно:

а) XL или Xc

б) сопротивлению катушки индуктивности,

г) сопротивлению катушки индуктивности плюс сопротивление резистора.

ОБЩИЕ СВЕДЕНИЯ

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебания называются свободными , если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему. Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменяется во времени по закону синуса или косинуса.

Дифференциальное уравнение гармонических колебаний имеет вид:

где - колеблющаяся величина, - циклическая частота.

- решение этого уравнения. Здесь - амплитуда , - начальная фаза.

Фаза колебаний.

Амплитуда - максимальное значение колеблющейся величины.

Период колебаний - промежуток времени, через который происходит повторение движения тела. Фаза колебания за период получает приращение . . , - число колебаний.

Частота колебаний - число полных колебаний, совершаемых в единицу времени. . . Измеряется в герцах (Гц).

Циклическая частота - число колебаний, совершаемых за секунд. . Единица измерения .

Фаза колебаний - величина, стоящая под знаком косинуса и характеризующая состояние колебательной системы в любой момент времени.

Начальная фаза - фаза колебаний в начальный момент времени. Фаза и начальная фаза измеряются в радианах ().

Свободные затухающие колебания - колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

- логарифмическим декрементом затухания .

Величина N e - это число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания - постоянная величина для данной колебательной системы.

Для характеристики колебательной системы используют понятие добротности Q , которая при малых значениях логарифмического декремента равна

.

Добротность пропорциональна числу колебаний, совершаемых системой за время релаксации.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТРЕНИЯ С ПОМОЩЬЮ НАКЛОННОГО МАЯТНИКА

Теоретическое обоснование методики определения коэффициентатрения

Наклонный маятник представляет собой шар, подвешенный на длинной нити и лежащий на наклонной плоскости.

Если шар отвести из положения равновесия (ось OO 1) на угол a, а затем отпустить, то возникнут колебания маятника. При этом шар будет кататься по наклонной плоскости около положения равновесия (рис. 1, а). Между шаром и наклонной плоскостью будет действовать сила трения качения. В результате колебания маятника будут постепенно затухать, то есть будет наблюдаться уменьшение во времени амплитуды колебаний.

Можно предположить, что по величине затухания колебаний могут быть определены сила трения и коэффициент трения качения.

Выведем формулу, которая связывает уменьшение амплитуды колебаний с коэффициентом трения качения m.При качении шара по плоскости сила трения совершает работу. Эта работа уменьшает полную энергию шара. Полная энергия складывается из кинетической и потенциальной энергий. В тех положениях, где маятник максимально отклонен от положения равновесия, его скорость, а следовательно, и кинетическая энергия равны нулю.

Эти точки называются точками поворота. В них маятник останавливается, поворачивается и движется обратно. В момент поворота энергия маятника равна потенциальной энергии, поэтому уменьшение потенциальной энергии маятника при его движении от одной точки поворота до другой равна работе силы трения на пути между точками поворота.

Пусть А - точка поворота (рис. 1, а). В этом положении нить маятника составляет угол a с осью OO 1 .Если бы трения не было, то через половину периода маятник оказался бы в точке N , а угол отклонения был бы равен a. Но из-за трения шар немного не докатится до точки N и остановится в точке В .Это и будет новая точка поворота. В этой точке угол нити с осью OO 1 будет равен . За половину периода угол поворота маятника уменьшился на . Точка В расположена несколько ниже, чем точка А, и поэтому потенциальная энергия маятника в точке В меньше, чем в точке А. Следовательно, маятник потерял высоту при перемещении из точки А в точку В .

Найдем связь между потерей угла и потерей высоты . Для этого спроецируем точки A и B на ось OO 1 (см. рис. 1, а). Это будут точки A 1 и B 1 соответственно. Очевидно, что длина отрезка А 1 В 1

где - длина нити.

Так как ось OO 1 наклонена под углом к вертикали, проекция отрезка на вертикальную ось и есть потеря высоты (рис. 1, б):

При этом изменение потенциальной энергии маятника при переходе его из положения A в положение В равно:

, (3)

где m - масса шара;

g - ускорение свободного падения.

Вычислим работу силы трения.

Сила трения определяется по формуле:

Путь , пройденный шаром за половину периода колебаний маятника, равен длине дуги AB :

.

Работа силы трения на пути :

Но , поэтому с учетом уравнений (2), (3), (4) получается

. (6)

Выражение (6) существенно упрощается с учетом того, что угол очень мал (порядка 10 -2 радиан). Итак, . Но . Поэтому .

Таким образом, формула (6) приобретает вид:

,

. (7)

Из формулы (7) видно, что потеря угла за половину периода определяется коэффициентом трения m и углом a. Однако можно найти такие условия, при которых от угла a не зависит. Учтем, что коэффициент трения качения мал (порядка 10 -3). Если рассматривать достаточно большие амплитуды колебаний маятника a, такие, при которых , то слагаемым в знаменателе формулы (7) можно пренебречь и тогда:

.

С другой стороны, пусть угол a будет малым настолько, чтобы можно было считать, что . Тогда потеря угла за половину периода колебаний будет определяться формулой:

. (8)

Формула (8) справедлива, если:

. (9)

Из-за того, что m имеет порядок 10 -2 , неравенству (9) удовлетворяют углы a порядка 10 -2 -10 -1 радиан.

Итак, за время одного полного колебания потеря угла составит:

,

а за n колебаний - .

Формула (10) дает удобный способ определения коэффициента трения качения. Необходимо измерить уменьшение угла Da n за 10-15 ко-лебаний, а затем по формуле (10) вычислить m.

В формуле (10) величина Da выражена в радианах. Чтобы использовать значения Da в градусах, формулу (10) необходимо видоизменить:

. (11)

Выясним физический смысл коэффициента трения качения. Рассмотрим сначала более общую задачу. Шар массой m и моментом инерции I c относительно оси, проходящей через центр масс, движется по гладкой поверхности (рис. 2).

Рис. 2

К центру масс C приложена сила , направленная вдоль оси ox и являющаяся функцией координаты x . Со стороны поверхности на тело действует сила трения F ТР. Пусть момент силы трения относительно оси, проходящей через центр C шара, равен M ТР.

Уравнения движения шара в этом случае имеют вид:

; (12)

, (13)

где - скорость центpa масс;

w - угловая скорость.

В уравнениях (12) и (13) четыре неизвестных: , w, F ТР, M ТР. В общем случае задача не определена.

Допустим, что:

1) тело катится без проскальзывания. Тогда:

где R - радиус шара;

2) тело и плоскость являются абсолютно жесткими, т.е. тело не деформируется, а касается плоскости в одной точке О (точечный контакт), тогда между моментом силы трения и силой трения имеется связь:

. (15)

С учетом формул (14) и (15) из уравнений (12) и (13) получаем выражение для силы трения:

. (16)

Выражение (16) не содержит коэффициента трения m, который определяется физическими свойствами соприкасающихся поверхностей шара и плоскости, такими, как шероховатость, или вид материалов, из которых изготовлены шар и плоскость. Этот результат - прямое следствие принятой идеализации, отражаемой связями (14) и (15). Кроме того, легко показать, что в принятой модели сила трения не совершает работы. Действительно, умножим уравнение (12) на , а уравнение (13) — на w. Учитывая, что

и

и складывая выражения (12) и (13), получаем

где W (x ) - потенциальная энергия шара в поле силы F (x ). Следует учесть, что

Если принять во внимание формулы (14) и (15), то правая часть равенства (17) обращается в нуль. В левой части равенства (17) стоит производная по времени от полной энергии системы, которая состоит из кинетической энергии поступательного движения шара , кинетической энергии вращательного движения и потенциальной энергии W (х ). Это значит, что полная энергия системы - постоянная величина, т.е. сила трения не совершает работы.

Очевидно, что и этот несколько странный результат также следствие принятой идеализации. Это свидетельствует о том, что принятая идеализация не отвечает физической реальности. В самом деле, в процессе движении шар взаимодействует с плоскостью, поэтому его механическая энергия должна убывать, а это значит, что связи (14) и (15) могут быть верны лишь настолько, насколько можно пренебречь диссипацией энергии.

Совершенно ясно, что в данном случае нельзя принять такую идеализацию, поскольку наша цель - определить по изменению энергии маятника коэффициент трения. Поэтому будем считать справедливым предположение об абсолютной жесткости шара и поверхности, а значит, и справедливой связи (15). Однако откажемся от предположения, что шар движется без проскальзывания. Мы допустим, что имеет место слабое проскальзывание.

Пусть скорость точек касания (на рис. 2 точка О) шара (скорость проскальзывания):

. (19)

Тогда, подставляя в уравнение (17) и учитывая условия (15) и (20), приходим к уравнению:

, (21)

из которого видно, что скорость диссипации энергии равна мощности силы трения. Результат вполне естественный, т.к. тело скользит по поверхности со скоростью и, нанего действует сила трения, совершающая работу, вследствие чего полная энергия системы уменьшается.

Выполняя в уравнении (21) дифференцирование и учитывая соотношение (18), получаем уравнение движения центра масс шара:

. (22)

Оно аналогично уравнению движения материальной точки массой:

, (23)

под действием внешней силы F и силы трения качения:

.

Причем, F ТР - обычная сила трения скольжения. Следовательно, при качении шара эффективная сила трения, которую называют силой трения качения, есть просто обычная сила трения скольжения, умноженная на отношение скорости проскальзывания к скорости центра масс тела. На практике часто наблюдается случай, когда сила трения качения не зависит от скорости тела.

Видимо, в этом случае скорость проскальзывания и пропорциональна скорости тела:

Все реальные колебательные системы являются диссипативными. Энергия механических колебаний такой системы постепенно расходуется на работу против сил трения, поэтому свободные колебания всегда затухают - их амплитуда постепенно уменьшается. Во многих случаях, когда отсутствует сухое трение, в первом приближении можно считать, что при небольших скоростях движения силы, вызывающие затухание механических колебаниях, пропорциональны скорости. Эти силы, независимо от их происхождения, называют силами сопротивления.

Перепишем это уравнение в следующем виде:

и обозначим:

где представляет ту частоту, с которой совершались бы свободные колебания системы при отсутствии сопротивления среды, т.е. при r = 0. Эту частоту называют собственной частотой колебания системы; β - коэффициент затухания. Тогда

(7.19)

Будем искать решение уравнения (7.19) в виде

где U - некоторая функция от t.

Продифференцируем два раза это выражение по времени t и, подставив значения первой и второй производных в уравнение (7.19), получим

Решение этого, уравнения существенным образом зависит от знака коэффициента, стоящего при U. Рассмотрим случай, когда этот коэффициент положительный. Введем обозначение тогда С вещественным ω решением этого уравнения, как мы знаем, является функция

Таким образом, в случае малого сопротивления среды , решением уравнения (7.19) будет функция

(7.20)

График этой функции показан на рис. 7.8. Пунктирными линиями показаны пределы, в которых находится смещение колеблющейся точки. Величину называют собственной циклической частотой колебаний диссипативной системы. Затухающие колебания представляют собой непериодические колебания, т.к, в них никогда не повторяются, например, максимальные значения смещения, скорости и ускорения. Величину обычно называют периодом затухающих колебаний, правильнее - условным периодом затухающих колебаний,

Натуральный логарифм отношения амплитуд смещений, следующих друг за другом через промежуток времени, равный периоду Т, называют логарифмическим декрементом затухания.

Обозначим через τ промежуток времени, за который амплитуда колебаний уменьшается в е раз. Тогда

откуда

Следовательно, коэффициент затухания есть физическая величина, обратная промежутку времени τ, в течение которого амплитуда убывает в е раз. Величина τ называется временем релаксации.

Пусть N - число колебаний, после которых амплитуда уменьшается в е раз, Тогда

Следовательно, логарифмический декремент затухания δ есть физическая величина, обратная числу колебаний N, по истечению которого амплитуда убывает в е раз

Затухающие колебания

Затухающие колебания пружинного маятника

Затухающие колебания - колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

В акустике: затухание - уменьшение уровня сигнала до полной неслышимости.

Затухающие колебания пружинного маятника

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m . Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Корни которого вычисляются по следующей формуле

Решения

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

  • Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом - экспоненциальное затухание.

  • Слабое затухание

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где - собственная частота затухающих колебаний.

Константы и в каждом из случаев определяются из начальных условий:

См. также

  • Декремент затухания

Литература

Лит.: Савельев И. В., Курс общей физики:Механика, 2001.


Wikimedia Foundation . 2010 .

Смотреть что такое "Затухающие колебания" в других словарях:

    Затухающие колебания - Затухающие колебания. ЗАТУХАЮЩИЕ КОЛЕБАНИЯ, колебания, амплитуда которых A уменьшается с течением времени вследствие потерь энергии: превращения энергии колебаний в тепло в результате трения в механических системах (например, в точке подвеса… … Иллюстрированный энциклопедический словарь

    Собственные колебания, амплитуда А которых убывает со временем t по закону экспоненты А(t) = Аоexp (?t) (? показатель затухания из за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Большой Энциклопедический словарь

    Колебания, амплитуда которых постепенно уменьшается, напр. колебания маятника, испытывающего сопротивление воздуха и трение в подвесе. Все свободные колебания, происходящие в природе, являются в большей или меньшей мере З. К. Электрические З. К.… … Морской словарь

    затухающие колебания - Механические колебания с уменьшающимися во времени значениями размаха обобщенной координаты или ее производной по времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    Затухающие колебания - (ВИБРАЦИЯ) колебания (вибрация) с уменьшающимися значениями размаха … Российская энциклопедия по охране труда

    Собственные колебания системы, амплитуда А которых убывает со временем t по закону экспоненты А(t) = А0ехр(?α t) (α показатель затухания) из–за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Энциклопедический словарь

    Затухающие колебания - 31. Затухающие колебания Колебания с уменьшающимися значениями размаха Источник … Словарь-справочник терминов нормативно-технической документации

    Собственные колебания системы, амплитуда А к рых убывает со временем t по закону экспоненты A(t) = = Аоехр(at) (a показатель затухания) из за диссипации энергии благодаря силам вязкого трения для механич. 3. к. и омическому сопротивлению для эл … Естествознание. Энциклопедический словарь

    затухающие колебания - silpstantieji virpesiai statusas T sritis automatika atitikmenys: angl. damped oscillation vok. gedämpfte Schwingung, f rus. затухающие колебания, n pranc. oscillations amorties, f; oscillations décroissantes, f … Automatikos terminų žodynas

    затухающие колебания - slopinamieji virpesiai statusas T sritis fizika atitikmenys: angl. damped oscillations; damped vibrations; dying oscillations vok. abklingende Schwingungen, f; gedämpfte Schwingungen, f rus. затухающие колебания, n pranc. oscillations amorties, f … Fizikos terminų žodynas